The answer is; crude oil and iron ore
Iron ore is used to make steel (mainly Fe). However, the raw material contains a mixture of impurities such as pyrite and apatite that have to be removed. Crude oil also includes a mixture of different hydrocarbon and other impurities. Impurities such as water have to be removed and the hydrocarbon distilled to separate them.
Answer:
Gallium-72
Explanation:
The elements are identified by the number of protons of the atom, which is its atomic number.
In this case the number of protons 39 (atomic number 39) permit you to identify the element as gallium.
Now, to identify the isotope you tell the name of the element and add the mass number.
The mass number is the sum of the protons and the neutrons
In this case, the number of neutrons is the original 39 plus the 2 added suddenly, i.e. 39 + 2 = 41, so the mass number is 31 + 41 = 72
Therefore, the isotope is gallium - 72.
Answer:
431.38 mg protein / mL
Explanation:
This is an example of the <em>Kjeldahl method</em>, for nitrogen determination. All nitrogen atoms in the protein were converted to NH₃ which then reacted with a <u>known excess of HCl</u>. This excess was later quantified via titration with NaOH.
First we calculate the <u>total amount of H⁺ moles from HCl</u>:
- 0.0388 M HCl * 10.00 mL = 0.388 mmol H⁺
Now we calculate the <u>excess moles of H⁺</u> (the moles that didn't react with NH₃ from the protein), from the <u>titration with NaOH</u>:
- HCl + NaOH → H₂O + Na⁺ + Cl⁻
- 0.0196 M * 3.83 mL = 0.075068 mmol OH⁻ = 0.0751 mmol H⁺
Now we substract the moles of H⁺ that reacted with NaOH, from the total number of moles, and the result is the <u>moles of H⁺ that reacted with NH₃ from the protein</u>:
- 0.388 mmol H⁺ - 0.0751 mmol H⁺ = 0.313 mmol H⁺ = 0.313 mmol NH₃
With the moles of NH₃ we know the moles of N, then we can <u>calculate the mass of N</u> present in the aliquot:
- 0.313 mmol NH₃ = 0.313 mmol N
- 0.313 mmol N * 14 mg/mmol = 4.382 mg N
From the exercise we're given the concentration of N in the protein, so now we <u>calculate the mass of protein</u>:
- 4.382 mg * 100/15.7 = 27.91 mg protein
Finally we <u>calculate the protein concentration in mg/m</u>L, <em>assuming your question is in 647 μL</em>, we first convert that value into mL:
- 647 μL *
0.647 mL
- 27.91 mg / 0.647 mL = 431.38 mg/mL
Answer:
ADD MORE POINTS THEN WE CAN TALK HUN
Explanation:
YW!!!!! ;D
Answer:
B
Explanation:
I looked it up and found the answer lol