Given :
A 3.82L balloon filled with gas is warmed from 204.9K to 304.8 K.
To Find :
The volume of the gas after it is heated.
Solution :
Since, their is no information about pressure in the question statement let us assume that pressure is constant.
Now, we know by ideal gas equation at constant pressure :

Hence, this is the required solution.
The scientific notation for 8,950,000 is
8.95 × 10^6
Answer:
atoms tend to react in order to gain 8 valence electrons
Explanation:
The octet rule describes the tendency of atoms of elements to react in order to have eight electrons in their valence shell. This is because having eight valence electrons confers stability to the atoms of these elements in the compounds they form.
The octet rule only does not apply to the transition elements or the inner transition elements as only the s and p electrons are involved. the electronic configuration in atoms having an octet is s²p⁶.
For example, sodium atom has one valence electron in its valence shell but a complete octet in the inner shell; it will react with chlorine atom which has seven valence electrons to form a stable compound, sodium chloride by donating its one valence electron in order to have an octet. Similarly, the chlorine atom will then have an octet by accepting the one electron from sodium atom.
Answer:
Chemical formula.
Explanation:
A chemical formula have fix proportion of atoms of elements.
Chemical formula:
A chemical formula is the way of presenting the chemical proportion of atoms of those elements, that combine to form a compound.
For example:
Water consist of two atom of hydrogen and one atom of oxygen. The atoms of both elements combine to form a compound i.e water. The atoms of both elements always combine in a fixed ratio which is 2:1 in molecule of water.
H₂O
2:1
Carbon dioxide consist of two atom of oxygen and one atom of carbon. The atoms of both elements combine to form a compound i.e carbon dioxide. The atoms of both elements always combine in a fixed ratio which is 1:2 in molecule of carbon dioxide .
CO₂
1;2