Cao + H2O ---->Ca(OH)2
Calculate the number of each reactant and the moles of the product
that is
moles = mass/molar mass
The moles of CaO= 56.08g/ 56.08g/mol(molar mass of Cao)= 1mole
the moles of water= 36.04 g/18 g/mol= 2.002moles
The moles of Ca (OH)2=74.10g/74.093g/mol= 1mole
The mass of differences of reactant and product can be therefore
explained as
1 mole of Cao reacted completely with 1 mole H2O to produce 1 mole of Ca(OH)2. The mass of water was in excess while that of CaO was limited
Answer:
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Explanation:
ppm (parts per million) concentration is defined as the mass (in milligrams) of a substance dissolved in one liter of solution.
In our case we have:
mass of MgBr₂ = 12.41 g
volume of water (which is equal to the final solution volume) = 2.55 L
Now we devise the following reasoning:
if 12.41 g of MgBr₂ are dissolved in 2.55 L of water
then X g of MgBr₂ are dissolved in 1 L of water
X = (1 × 12.41) / 2.55 = 4.867 g of MgBr₂
if in 184 g (1 mole) of MgBr₂ we have 160 g of Br⁻
then in 4.867 g of MgBr₂ we have Y g of Br⁻
Y = (4.867 × 160) / 184 = 4.232 g of bromide (Br⁻)
4.232 g of bromide (Br⁻) = 4234 mg of bromide (Br⁻)
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
In a covalent bond, the atoms bond by sharing electrons. Covalent bonds usually occur between nonmetals. For example, in water (H2O) each hydrogen (H) and oxygen (O) share a pair of electrons to make a molecule of two hydrogen atoms single bonded to a single oxygen atom.
It will get hotter, because the molecules create heat when they move around just like us when we run.
Hi the answer is 1/6, because 1/6 of 3,600 is 600, so it's 1/6. Have a great day!