Answer:
y = 1/3x - 19/3
Step-by-step explanation:
3y = x -3
y = 1/3x -3
Slope = 1/3
Point= (1,-6)
y-intercept = -6 - (1/3)(1) = -6 - 1/3 = -19/3

We have, Discriminant formula for finding roots:

Here,
- x is the root of the equation.
- a is the coefficient of x^2
- b is the coefficient of x
- c is the constant term
1) Given,
3x^2 - 2x - 1
Finding the discriminant,
➝ D = b^2 - 4ac
➝ D = (-2)^2 - 4 × 3 × (-1)
➝ D = 4 - (-12)
➝ D = 4 + 12
➝ D = 16
2) Solving by using Bhaskar formula,
❒ p(x) = x^2 + 5x + 6 = 0



So here,

❒ p(x) = x^2 + 2x + 1 = 0



So here,

❒ p(x) = x^2 - x - 20 = 0



So here,

❒ p(x) = x^2 - 3x - 4 = 0



So here,

<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
<h2><u><em>
46 cm²</em></u></h2>
Step-by-step explanation
the figure is composed of a square with an isosceles right triangle inside, we find the area of the square and we take away the area of the triangle.
Triangle area = lxl, right-angled triangle area side by side divided by two.
8 * 8 = 64cm²
6 * 6 : 2 = 18 cm²
Area of the shaded region
64 - 18 = 46 cm²
The true statement about the function f(x) = -x² - 4x + 5 is that:
- The range of the function is all real numbers less than or equal to 9.
<h3 /><h3>What is the domain and range for the function of y = f(x)?</h3>
The domain of a function is the set of given values of input for which the function is valid and true.
The range is the dependent variable of a given set of values for which the function is defined.
- The domain of the function: f(x) = -x² - 4x + 5 are all real number from -∞ to +∞
For a parabola ax² + bx + c with the vertex 
- If a < 0, then the range is f(x) ≤

- If a > 0, then the range f(x) ≥

The vertex for an up-down facing parabola for a function y = ax² + bx + c is:

Thus,
- vertex
= (-2, 9)
Range: f(x) ≤ 9
Therefore, we can conclude that the range of the function is all real numbers less than or equal to 9.
Learn more about the domain and range of a function here:
brainly.com/question/26098895
#SPJ1