1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
3 years ago
8

Nathan is jogging on a circular trail in a state park. The diameter of the trail is 650 meters. What approximate distance ( circ

umference) does Nathan cover in one lap around the park

Mathematics
1 answer:
erica [24]3 years ago
3 0
If using the radius, you would multiply the radius by 2*pi, to calculate the circumference, which should be the same as the answer i got.

You might be interested in
Please help me :(bbbbbb
Strike441 [17]

Answer:

im sorry this seems to not be correctly stated

Step-by-step explanation:

4 0
3 years ago
What is the answer too 2 7/10 - 4/5 ?
aivan3 [116]
19/10 or 1.9 or 1 9/10
6 0
3 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Simplify(1\2)^4 1\16 1\8 1\4
tino4ka555 [31]

Step-by-step explanation:

(1\2)^4 x 1\16 x 1\8 x 1\4 [1/2^4=16]

1/16 x 1/512

=>1/2048

5 0
3 years ago
In the given graph of a cubic polynomial, what are the number of real zeros and complex zeros, respectively?
Bumek [7]
There would be 1 real zero and two complex zeros
3 0
3 years ago
Other questions:
  • A cereal box has dimensions of 2 in., 1 5 3 in., and 3 10 4 in.If the box contains 8 servings, how much volume does each serving
    14·1 answer
  • Uma empresa está realizando seu processo de licenciamento ambiental, onde foi solicitada pelo órgão ambiental uma avaliação da c
    7·1 answer
  • What is the answer? Please show work if possible.
    14·2 answers
  • the domain of the function f(x) = 3x3 is {2, 5}. what is the function’s range? the range of the function f(x) = 3x3 when its dom
    13·2 answers
  • Please Help!!!!!!! No stupid answers
    7·1 answer
  • Use the scale factor to find the length of the image.
    15·1 answer
  • Alexis spends 4 hours a day watching tv. how many seconds does she watch tv in a week
    14·1 answer
  • Police chases a driver. Originally, the police is 1 mile behind the driver. The speed of the police car is 90 mph, and the speed
    5·1 answer
  • Why is the percent of change from 145 pounds to 132 pounds
    11·1 answer
  • Using the formula P=f/a , find f If P= 27 and A = 4.<br> 108<br> 6.75<br> 0.148<br> 29
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!