I think the correct answers from the choices listed above are the first, third and the last option. Ionic compounds are compounds that dissociates into ions when in aqueous solution. From the list, NH4Cl, KF and MgO are the ionic compounds. Hope this answers the question.
The balanced chemical reaction is:
<span>2 I2 + KIO3 + 6 HCl ---------> 5 ICl + KCl + 3 H2O
</span>
We are given the amount of the product to be produced from the reaction. This will be the starting point of our calculations.
28.6 g ICl (1 mol / 162.35 g ICl ) ( 2 mol I2 / 5 mol ICl ) ( 253.81 g I2 / 1 mol I2 ) = 17.88 g I2
Explanation:
It's (D), nuclear fission................
Answer:
Part A:
"360 grams of NaCl can be dissolved in 1 L water. So, 2000 grams sugar can be dissolved in 1 L water then we can say that the solubility of salt is lesser in water as to sugar and both heightened by increasing the temperature. If we make a batch of 800 L we can add sugar, 1600 kg at 25 0c. We can add salt is 288 kg at 25 0c and the ingredient tomato is having low solubility."
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/8061-describe-the-sequence-of-adding-ingredients-to-make-the-recipe.html
Part B:
'Manufacturers can generate new value minimize cost and increase operational stability by focusing on 4 broad areas; Management, Supply Circle, Product Design, and Value Recovery.'
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/2807911-what-changes-could-be-made-to-optimize-the-manufacturing-process.html
These are two questions and two answers
Question 1.
Answer:
Explanation:
<u>1) Data:</u>
a) m = 9.11 × 10⁻³¹ kg
b) λ = 3.31 × 10⁻¹⁰ m
c) c = 3.00 10⁸ m/s
d) s = ?
<u>2) Formula:</u>
The wavelength (λ), the speed (s), and the mass (m) of the particles are reltated by the Einstein-Planck's equation:
- h is Planck's constant: h= 6.626×10⁻³⁴J.s
<u>3) Solution:</u>
Solve for s:
Substitute:
- s = 6.626×10⁻³⁴J.s / ( 9.11 × 10⁻³¹ kg × 3.31 × 10⁻¹⁰ m) = 2.20 × 10 ⁶ m/s
To express the speed relative to the speed of light, divide by c = 3.00 10⁸ m/s
- s = 2.20 × 10 ⁶ m/s / 3.00 10⁸ m/s = 7.33 × 10 ⁻³
Answer: s = 7.33 × 10 ⁻³ c
Question 2.
Answer:
Explanation:
<u>1) Data:</u>
a) m = 45.9 g (0.0459 kg)
b) s = 70.0 m/s
b) λ = ?
<u>2) Formula:</u>
Macroscopic matter follows the same Einstein-Planck's equation, but the wavelength is so small that cannot be detected:
- h is Planck's constant: h= 6.626×10⁻³⁴J.s
<u>3) Solution:</u>
Substitute:
- λ = 6.626×10⁻³⁴J.s / ( 0.0459 kg × 70.0 m/s) = 2.06 × 10 ⁻³⁴ m
As you see, that is tiny number and explains why the wave nature of the golf ball is undetectable.
Answer: 2.06 × 10 ⁻³⁴ m.