The empirical formula is = C2H4O2
Molecular formula=C2H4O2
<h3>Calculation of
Molecular formula and empirical formula:-</h3>
Vinegar has three elements:
oxygen = 53.29%,
hydrogen = 6.70%,
and carbon = 40.01%.
We can create an equation for the total mass of vinegar with 'a' carbon atom,' b' hydrogen atom, and 'c' oxygen atoms using the molar masses of C, H, and O.
12*a + 1*b + 16*c = 60
We also know that C makes up 24 g/mol, or 40.01 percent, of the overall mass of 60 g/mol.
The formula contains two C atoms because each C atom has a molecular mass of 12 g/mol. You may determine that the formula contains 4 H and 2 O atoms by using the same reasoning for H and O.
The empirical formula is = C2H4O2
Molecular formula= (C2H4O2)n
(4 x 12 + 1 x 4 + 16 x 2)n = 60
(84)n = 60
n=60/84
n=0.71=1
Molecular formula=C2H4O2
Learn more about Molecular and empirical formulas here:-
brainly.com/question/9207476
#SPJ4
Answer:
There are 2 atoms in NaCl. This is because there is 1 atom of Na (sodium) and 1 atom of Cl (chlorine) in each NaCl molecule. Elements by themselves do not have a "number of atoms"- if you're talking about the atomic number, it's the number of protons (or electrons in a neutral atom) of an element.
Answer : The total change in enthalpy of this reaction is 25 kJ.
Explanation :
Enthalpy of reaction : It is defined as the changes in heat energy takes place when reactants go to products. It is denotes as .
ΔH = Energy of product - Energy of reactant
ΔH is positive when heat is absorbed and the reaction is endothermic.
ΔH is negative when heat is released and the reaction is exothermic.
In the given potential energy diagram, the energy of product at higher level and energy of reactant at lower level. The ΔH for this reaction will be positive.
Given:
Energy of product = 55 kJ
Energy of reactant = 30 kJ
ΔH = Energy of product - Energy of reactant
ΔH = 55 kJ - 30 kJ
ΔH = 25 kJ
Thus, the total change in enthalpy of this reaction is 25 kJ.
The answer is A as they had to spend time growing or looking for food as food was scarce back then.
Answer:
aluminum oxide will be produced from the complete reaction of 1.87L of oxygen gas at 793.0mmHg and 28.0 Celsius. answer: 5.36g
Explanation: