Answer:
86
Step-by-step explanation:
<u>Perimeter of WXY = WSY+WRX+XY</u>
<em>--> WSY = SY x 2</em>
--> WSY = 16 x 2 = 32
<em>Since it is an isosceles triangle, WRX = WSY</em>
--> WRX = 32
<em>--> Draw a straight line from W to XY to divide it into two halves assuming it to be point A. This would form a right angle triangle of WAX.</em>
<em>--> Solve it using the cos theta rule</em>
--> Angle = Angle X = 70°
Hypotenuse = WRX = 32
Adjacent = WA = ?
<em>--> Cos (Angle) = Adjacent/Hypotenuse</em>
Cos (70) = WA/32
WA = 10.9 rounded off to 11
--> WA=AY= 11
--> XY = WA + AY = 11+11 = 22
<em>--> Perimeter = WSY+WRX+XY</em>
Perimeter = 32+32+22
Perimeter = 86
Therefore, the perimeter of WXY is 86.
Answer:
1st: 3*root6 + 5
2nd: 35*root2 + 115
3rd: 24*root2 - 20*root6 + 15*root3 - 18
4th: 17*root6 - 38
5th: 13*root10 - 42
Step-by-step explanation:
To simplify these expressions we need to use the distributive property:
(a + b) * (c + d) = ac + ad + bc + bd
So simplifying each expression, we have:
1st.
(2 root 2 + root 3 ) ( 2 root 3 - root 2)
= 4*root6 - 2*2 + 2*3 - root6
= 3*root6 - 4 + 9
= 3*root6 + 5
2nd.
(root 5 + 2 root 10) (3 root 5 + root 10)
= 3 * 5 + root50 + 6*root50 + 2*10
= 15 + 5*root2 + 30*root2 + 100
= 35*root2 + 115
3rd.
(4 root 6 - 3 root 3) (2 root 3 - 5)
= 8*root18 - 20*root6 - 6*3 + 15root3
= 24*root2 - 20*root6 + 15*root3 - 18
4rd.
(6 root 3 - 5 root 2 ) (2 root 2 - root 3)
= 12*root6 - 6*3 - 10*2 + 5*root6
= 17*root6 - 18 - 20
= 17*root6 - 38
5th.
(root 10 - 3 ) ( 4 - 3 root 10)
= 4*root10 - 3*10 - 12 + 9*root10
= 13*root10 - 30 - 12
= 13*root10 - 42
Answer:
20 weeks
151-Weigh
Step-by-step explanation:
<u><em>Mark Brainiest Please :) Thanks!</em></u>