Answer:
y=-1/8
Step-by-step explanation:
Add 1/4 to -3/8
2x - 10 = 30
2x = 40
x = 20
Answer:
D. The scale factor is 1:840
Step-by-step explanation:
Make 630 ft into inches, so 7560
Then make it 9/7560, which simplifies to 1/840
Answer:
x = -1
x = 5
Step-by-step explanation:
Use pythagorean theorem: a² + b² = c²
x² + (2x + 2)² = (2x + 3)²
Since these are quantities, you'll have to make them into quadratic equations.
(2x + 2)(2x + 2) = 4x² + 4x + 4x + 4
(2x + 3)(2x + 3) = 4x² + 6x + 6x + 9
x² + 4x² + 4x + 4x + 4 = 4x² + 6x + 6x + 9
Combine like terms
5x² + 8x + 4 = 4x² + 12x + 9
Move one side to set the equation equal to 0
x² - 4x - 5 = 0
Solve
x² - 5x + x - 5 = 0
x(x - 5) + 1(x - 5) = 0
(x + 1)(x - 5) = 0
x = -1, 5
<em>We</em><em> </em><em>can</em><em> </em><em>check</em><em> </em><em>that</em><em> </em><em>these</em><em> </em><em>are</em><em> </em><em>correct</em><em> </em><em>by</em><em> </em><em>plugging</em><em> </em><em>them</em><em> </em><em>in</em><em> </em><em>for</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>seeing</em><em> </em><em>if</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>equal</em>
<em>For</em><em> </em><em>example</em>
<em>(</em><em>-1</em><em>)</em><em>²</em><em> </em><em>+</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>2</em><em>)</em><em>²</em><em> </em><em>=</em><em> </em><em>(</em><em>2</em><em>(</em><em>-1</em><em>)</em><em> </em><em>+</em><em> </em><em>3</em><em>)</em><em>²</em>
<em>1</em><em> </em><em>=</em><em> </em><em>1</em>
Answer:

Step-by-step explanation:
We need at least two points to write the equation of a straight line.
The recursive formula that Elijah wrote is:


When we substitute n=0, we get:



The points (0,30) and (1,37) lies on this line.
The equation of this line is of the form:

where b =30 is the y-intercept and m=7 is the slope.
We plug in these values to get:

Note that the slope of the line is equal to the common difference of the Arithmetic Sequence.
You could also use the two points to find the slope:
