Answer: trapezoid
Step-by-step explanation: A <u>trapezoid</u> is a quadrilateral
with exactly one pair of parallel sides.
Also, quadrilaterals are two-dimensional shapes.
So it's impossible that's its 3-d.
The similarity ratio of ΔABC to ΔDEF = 2 : 1.
Solution:
The image attached below.
Given ΔABC to ΔDEF are similar.
To find the ratio of similarity triangle ABC and triangle DEF.
In ΔABC: AC = 4 and CB = 5
In ΔDEF: DF = 2, EF = ?
Let us first find the length of EF.
We know that, If two triangles are similar, then the corresponding sides are proportional.
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Ratio of ΔABC to ΔDEF = 
Similarly, ratio of ΔABC to ΔDEF = 
Hence, the similarity ratio of ΔABC to ΔDEF = 2 : 1.
Answer:
148ft
Step-by-step explanation:
To solve this question, you'll have to imagine the statue makes a right angle triangle with the base since it has an angle of elevation from the base to the top of the torch.
Assuming the height from the pedestal to the top of the torch is y
The height of the statue is x
But we know the height of the pedestal = 150ft
The distance from the observer to the base of the pedestal = 250ft
And the angle of elevation = 50°
See attached document for better illustration.
Tanθ = opposite / adjacent
θ = 50°
Adjacent = 250
Opposite = y
Tan50 = t / 250
y = 50 × tan50
y = 50 × tan50
y = 50 × 1.1917
y = 297.925ft
The height of the statue from the base of the pedestal to the top of the torch is 297.925ft
The height of the statue = x
x = (height of the statue + height of the pedestal) - height of the pedestal
x = y - 150
x = 297.925 - 150
x = 147.925ft
Approximately 148ft
The height of the statue is 148ft
Answer:
Okie when you do these you got to give all information
Step-by-step explanation: because people can help you instead of looking at a picture wonderin what they are they are supposed to do