Proving a relation for all natural numbers involves proving it for n = 1 and showing that it holds for n + 1 if it is assumed that it is true for any n.
The relation 2+4+6+...+2n = n^2+n has to be proved.
If n = 1, the right hand side is equal to 2*1 = 2 and the left hand side is equal to 1^1 + 1 = 1 + 1 = 2
Assume that the relation holds for any value of n.
2 + 4 + 6 + ... + 2n + 2(n+1) = n^2 + n + 2(n + 1)
= n^2 + n + 2n + 2
= n^2 + 2n + 1 + n + 1
= (n + 1)^2 + (n + 1)
This shows that the given relation is true for n = 1 and if it is assumed to be true for n it is also true for n + 1.
<span>By mathematical induction the relation is true for any value of n.</span>
Answer:
Jennifer made the higher percentage of shots
Answer:
First, let's define an arithmetic sequence:
In an arithmetic sequence, the difference between any two consecutive terms is always the same.
Then we can write it in a general way as:
aₙ = a₁ + (n - 1)*d
where:
aₙ is the n-th term of the sequence.
d is the constant difference between two consecutive terms.
a₁ is the initial term of our sequence.
Now in this case we know that the first terms of our sequence are:
84, 77, ...
Then we know the initial term of our sequence:
a₁ = 84.
And the value of d can be calculated as:
d = a₂ - a₁ = 77 - 84 = -7
Then the general way of writing this sequence is:
aₙ = 84 + (n - 1)*(-7)
And the recursion relation is:
aₙ = aₙ₋₁ - 7
So for the n-th term, we must subtract 7 of the previous term.
Answer:
Step-by-step explanation:
Part A:
The interquartile range is approximately 10
Part B:
The difference between the median values for each data set is approximately 6
Part C:
i) More widely distributed and concentrated to the beginning of the month
The better measure of the center for the male dataset is the median
ii) The skewed distribution
The mean is the better measure of center for the dataset
Part D;
A possible reason for the outlier is by chance
Answer:
2/3
Step-by-step explanation:
2/15 of 5
Of means multiply
2/15 * 5
Multiply the numerators
2*5 = 10
Put over the denominator
10/15
We can divide the top and bottom by 5
10/5 =2
15/5 =3
2/3