It would be .43, rounded. You get this answer by taking all of the 10th graders (14) and looking at how many prefer sporting events (6). Then, you simply form a decimal from 6/14, and that comes out to .428, and .43 rounded up. I hope this helps! :)
Multiply the money * the hours
5*7= 35
Answer : $35
1. 7.25
2. 6.125
3. 3.4
4. 0.15
5. 77
6. 2.15
7. 33.16
8. 1.95
9. 19
10. 0.3
11. 6.2
12. 405
13. 250
14. 11.8
Answer:
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399
Step-by-step explanation:
There is a random binomial variable
that represents the number of units come off the line within product specifications in a review of
Bernoulli-type trials with probability of success
. Therefore, the model is
. So:
![P (X < 9) = 1 - P (X \geq 9) = 1 - [{15 \choose 9} (0.91)^{9}(0.09)^{6}+...+{ 15 \choose 15}(0.91)^{15}(0.09)^{0}] = 0.0002](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%209%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%209%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%209%7D%20%280.91%29%5E%7B9%7D%280.09%29%5E%7B6%7D%2B...%2B%7B%2015%20%5Cchoose%2015%7D%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0002%20)
![P (X < 10) = 1 - P (X \geq 10) = 1 - [{15 \choose 10}(0.91)^{10}(0.09)^{5}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0013](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2010%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2010%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2010%7D%280.91%29%5E%7B10%7D%280.09%29%5E%7B5%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0013%20)
![P (X < 11) = 1 - P (X \geq 11) = 1 - [{15 \choose 11}(0.91)^{11}(0.09)^{4}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0082](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2011%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2011%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2011%7D%280.91%29%5E%7B11%7D%280.09%29%5E%7B4%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0082)
![P (X < 12) = 1- P (X \geq 12) = 1 - [{15 \choose 12}(0.91)^{12}(0.09)^{3}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0399](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2012%29%20%3D%201-%20P%20%28X%20%5Cgeq%2012%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2012%7D%280.91%29%5E%7B12%7D%280.09%29%5E%7B3%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0399%20)
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399