Answer:
Psm = 30.66 [Psig]
Explanation:
To solve this problem we will use the ideal gas equation, recall that the ideal gas state equation is always worked with absolute values.
P * v = R * T
where:
P = pressure [Pa]
v = specific volume [m^3/kg]
R = gas constant for air = 0.287 [kJ/kg*K]
T = temperature [K]
<u>For the initial state</u>
<u />
P1 = 24 [Psi] + 14.7 = 165.47[kPa] + 101.325 = 266.8 [kPa] (absolute pressure)
T1 = -2.6 [°C] = - 2.6 + 273 = 270.4 [K] (absolute Temperature)
Therefore we can calculate the specific volume:
v1 = R*T1 / P1
v1 = (0.287 * 270.4) / 266.8
v1 = 0.29 [m^3/kg]
As there are no leaks, the mass and volume are conserved, so the volume in the initial state is equal to the volume in the final state.
V2 = 0.29 [m^3/kg], with this volume and the new temperature, we can calculate the new pressure.
T2 = 43 + 273 = 316 [K]
P2 = R*T2 / V2
P2 = (0.287 * 316) / 0.29
P2 = 312.73 [kPa]
Now calculating the manometric pressure
Psm = 312.73 -101.325 = 211.4 [kPa]
And converting this value to Psig
Psm = 30.66 [Psig]
You can mark, lift and clean a ball on the green, but it's a violation to do so when another ball is in motion, as your ball might influence the outcome of that stroke. You can also mark and clean your ball in some instances when it's off the green: cleaning it, for example, just to the point where you can identify it.
In a block and tackle, some friction in the pulleys will reduce the mechanical advantage of the machine. To include friction in a calculation of the mechanical advantage of a block and tackle, divide the weight of the object being lifted by the weight necessary to lift it.
Hope this helps
Answer:
<em>The magnitude of the magnetic field will act in a direction towards me.</em>
<em></em>
Explanation:
When a charged particle enters a magnetic field, it is deflected. The direction of travel of the particle is deflected, but the kinetic energy of the particle is not affected. <em>The force experienced by a charged particle as it enters a magnetic field that acts perpendicular to the path of the velocity of the particle, will produce a force that is perpendicular to both the direction of travel of the particle and the direction of the magnetic field.</em> In this case, the proton moves in the y-direction, the magnetic field is in the x-direction, therefore the force experienced by the particle will be towards me.
Answer:
Explanation:
Kinetic Energy formula:
KE =
mv²
m=mass
v=speed
Given:
m=0.25kg
v=2.5m/s
Plug the values in:
KE = 1/2(0.25kg)(2.5m/s)²
KE = 0.78125 J (Joules)