This is very good conceptual question and can clear your doubts regarding work-energy theorem.
Whenever force is perpendicular to the direction of the motion, work done by that force is zero.
According to work-energy theorem,
Work done by all the force = change in kinetic energy.
here, work done = 0.
Therefore,
0=change in kinetic energy
This means kinetic energy remains constant.
Hope this helps
-- Before Adrian left the airplane, his gravitational potential energy was
(mass) x (gravity) x (height) = (80kg) x (9.81m/s²) x (1,000m) = 784,800 joules
-- When he reached the ground, his kinetic energy was
(1/2) x (mass) x (speed)² = (40kg) x (5m/s)² = 1,000 joules
-- Between the airplane and the ground, the Adrian lost
(784,800 joules) - (1,000 joules) = 783,800 joules
Where did all that energy go ?
Energy never just disappears. If it's missing, it had to go somewhere.
The Adrian used 783,800 joules of energy to push air our of his way
so that he could continue his parachute jump, and reach the ground
in time to be home for dinner.
You always multiply the mass (kg) by the velocity at which the object is travelling (m/s) to get the momentum (kg m/s) thus: 30 × 5 = 150 kg m/s
Answer:
What a medium-mass star becomes after a planetary nebula; a very bright, dense mass about the size of the planet Earth. ... The process that generates all of the energy that a star produces. Supernova. A Red Super Giant explodes into this when it runs out of elements to fuse together.
Explanation:
Answer:
A
Explanation:
A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Therefore it can not be any of the other answers because the substance was water at first but now its salty water.
ps what kind of person would drink water after you put salt in it lol.