Answer:
Average force = 67 mn
Explanation:
Given:
Initial velocity u = 0 m/s
Final velocity v = 67 m/s
Time t = 1 ms = 0.001 sec.
Computation:
Using Momentum theory
Change in momentum = F × Δt
(v-u)/t = F × Δt
F × 0.001 = (67 - 0)/0.001
F= 67,000,000
Average force = 67 mn
Answer:
The increase in potential energy of the ball is 115.82 J
Explanation:
Conceptual analysis
Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:
U = m × g × h
U: Potential Energy in Joules (J)
m: mass in kg
g: acceleration due to gravity in m/s²
h: height in m
Equivalences
1 kg = 1000 g
1 ft = 0.3048 m
1 N = 1 (kg×m)/s²
1 J = N × m
Known data




Problem development
ΔU: Potential energy change
ΔU = U₂ - U₁
U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁
U₂ - U₁ = mₓg(h₂ - h₁)

The increase in potential energy of the ball is 115.82 J
ΔU =
-Wint
Consdier the work of of
interaction is W =m*g*h - equation -1
and the Potential energy U.
Final Potential energy Uf =0
, And the Initial Potential Energy Ui =m*g*h
<span>Now we will write the
equation for a Change in Potential energy ΔU,</span>
ΔU = Uf
- Ui
= 0-m*g*h
<span> ΔU = -m*g*h --Equation 2</span>
Now compare the both equation
<span>Wint = -ΔU</span>
we can rewrite the above
equation
ΔU =
-W.
<span>So our Answer is ΔU = -W. .</span>
<span> </span>
Shadows are formed when an opaque object or an object that doesn't allow light to pass through is in the way or infront of etc. a source of light.
Answer:
the magnitude of the work done by the two blocks is the same.
Explanation:
The work done by block a on block b is given by:

where Fa is the force exerted by block a on block b, and d is the distance they cover.
The work done by block b on block a is given by:

where Fb is the force exerted by block b on block a, and d is still the distance they cover.
For Newton's third law, the force exerted by block a on block b is equal to the force exerted by block b on block a, therefore

and so
