Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.
Answer:
The beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz
Explanation:
Given;
velocity of wave on the string with lower tension, v₁ = 35.2 m/s
the fundamental frequency of the string, F₁ = 258 Hz
<u>velocity of wave on the string with greater tension;</u>

where;
v₁ is the velocity of wave on the string with lower tension
T₁ is tension on the string
μ is mass per unit length

Where;
T₁ lower tension
T₂ greater tension
v₁ velocity of wave in string with lower tension
v₂ velocity of wave in string with greater tension
From the given question;
T₂ = 1.1 T₁

<u>Fundamental frequency of wave on the string with greater tension;</u>
<u />
<u />
Beat frequency = F₂ - F₁
= 270.6 - 258
= 12.6 Hz
Therefore, the beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz
3) a stretched rubber band
1. U = Q + W
U = -500 + 1000
U = 500 J
2. The first law of thermodynamic is about the law of conservation of energy where energy in should be equal to energy out.
3. It is the windmill that does not transform energy from heat to mechanical instead it is the transforms the opposite.
4. In a heat engine, work is used to transfer thermal energy from a hot reservoir to a cold one.
5. 5.00 × 10^4 J - 2.00 × 10^4 J = 3.00 × 10^4 J
6. To increase the work done, we raise the temperature of the cold reservoir.