9 hope this is right 65% accurate answer
FV value of the amount using future value annuity will be:
FV=P[(1+r)^n-1]/r
FV=2460[(1+0.01175)^18-1]/(0.01175)
FV=48,992.23
The present value of this amount will be:
PV=pe^(-rt)
PV=48992.23e^(-0.0235*9)
PV=39,652.81
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>