Answer:
should i simplify it? or factorise it?
<u>I</u><u> </u><u>g</u><u>u</u><u>e</u><u>s</u><u>s</u><u> </u><u>i</u><u>t</u><u>s</u><u> </u><u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>i</u><u>s</u><u>e</u><u>!</u><u> </u><u>S</u><u>o</u><u> </u><u>i</u><u> </u><u>m</u><u> </u><u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>i</u><u>s</u><u>i</u><u>n</u><u>g</u><u>!</u>
x^2+16+64
(x)^2+2×x×8+(8)^2
(x+8)^2
=(x+8)(x+8)
Answer:
14p+7
Step-by-step explanation:
Distribute
3p+15-8+11p
Answer:
1 + (11-4)^2 +3x5
Step-by-step explanation:
1 + (11-4)^2 +3x5
1 + (7)^2 + 3 x 5
1 + 49 + 15
50 + 15 = 65
Answer:
rational
Step-by-step explanation:
enjoy the great answers
g(f(x)) means plug in f(x) for every "x" in g(x).
g(f(x))=(x+4)^2-1=x^2+8x+16-1=x^2+8x+15
answer: x^2+8x+15