The force on the layer will be equivalent to the weight of water on it. This is given by:
F = mg; m is the mass of water and g is the acceleration due to gravity.
If you really have nothing else but time, then you can't. There must be some other shred of information. Search around. Look under rocks.
Answer:
I have examined the different parts of blub and I assume the answer is (D)T and U
Hope this helps you
<h2>Astronaut travels to different planets - Option 4 </h2>
If an astronaut travels to different planets, none of the planets will the astronaut’s weight be the same as on Earth. On jupiter, weight will be more than the weight on earth. For instance if an astronaut has 100kg on earth then he will have 252 kg on jupiter.
On Mars, weight will be less than the weight on the earth. For instance, if an astronaut has 68 kg on earth then he will has 26 kg on mars. On Mercury, weight of an astronaut will be less than the weight on earth. Example if he has 68 kg on earth then he will have 25.7kg on mercury.
Hence, none of these planets the weight of astronaut will be same as on earth.
<span>as i recall, gravity is relative to the square of the distance.
so if the distance is tripled, then the gravitational attraction would be reduced by 3^2 or 1/9.
so F1 = F0/9
if the satellite is 2R from the center, and is moved to 4R (doubled would be 3R, tripled is 4R) then the distance is twice, and gravity would be 2^2 or 1/4.
</span>