Answer: the ballon will explode.
Explanation:
The air in the ballon will increase its temperature and, according to the laws of behavior of the gases, it will expand until it explode.
You can assume ideal gas behavior and use PV = nRT, where you can see that the volume V and P are proportional to the temperature T, so with the increase in temperature the ballon will increase its volume, until the material of the ballon can not expand more, when the pressure will increase and the material will fail.
Answer:
Energy cannot be changed from one form to another without a loss of usable energy
Explanation:
Second law of thermodynamics states that the total entropy or the randomness of the system remains constant over time. It also states that the net entropy will remain the same or it will increase.
Entropy of a system is given by heat absorbed divided by temperature. It is given by :

So, the correct option is (A) "Energy cannot be changed from one form to another without a loss of usable energy".
Answer:
It becomes a giant or supergiant.
Explanation:
Once all the hydrogen supply is gone, fusion of hydrogen into helium stops. The core starts to contract and liberates energy, which heats the superior layer until it becomes hot enough to start the fusion of hydrogen into helium.
Answer:
The range of characteristic frequencies of electromagnetic radiation that are readily absorbed and emitted by an atom. The atomic spectrum is an effect of the quantized orbits of electrons around the atom
Additional Facts:
- Atomic spectra can also be analyzed to determine the composition of objects
- The frequency depends on the difference in energy between the orbitals. Explaining this phenomenon was crucial to the development of quantum mechanics
- Occurs due to the fact are quantized at specific levels determined by the atomic number
Answer:
Explanation:
When a force hits something, an equal amount of force is exerted back on it.