Answer:
The probability of an incorrect report is found to be 0.03 or 3%.
Explanation:
We will get an incorrect report in both the cases of false alarm or missing excessive radiation. Since, both are mutually exclusive events. Therefore, the probability of both events to occur simultaneously will be 0. Thus, the probability of an incorrect report will be the sum of the probability of false alarm and the probability of a missing radiation.
P (False Alarm) = 0.02
P (Missing Radiation) = 0.01
P(Incorrect Report) = P (False Alarm) + P(Missing Radiation)
P (Incorrect Report) = 0.02 +0.01
P(Incorrect Report) = 0.03 = 3%
Answer: 0.25 seconds.
Explanation:
The yo-yo does 240 revolutions in one minute, and we know that one minute has 60 seconds, then the revolutions per second can be calculated as:
240 rev/60s = 4 rev/s, this will be the frequency of the yo-yo
The frequency is actually written as: f = 4 Hz = 4 s^-1
We want to find the period of this yo-yo.
The period is the duration of one cycle, and we have the relation:
f = 1/T
Where f is the frequency and T is the period, then:
T = 1/f
And we know the value of f, it is f = 4 s^-1
Then the period will be:
T = 1/(4 s^-1) = (1/4) s
Then the period of the yo-yo is 1/4 seconds = 0.25 seconds.
Answer:
Gravity and
Air resistance
Explanation:
The two forces acting on a skydiver are gravitational force and air resistance.
Gravitational force is a force that tends to pull all massive bodies towards the center of the earth. It works on all bodies that has mass. The larger or bigger the mass, the more the pull of gravity on the body.
Air resistance is the drag of air on a body as it passes to it. It is resisting force.
- When a sky diver jumps out of a plane, he/she encounters both gravity and air resistance.
- It soon balances both force and attain terminal velocity.
- Air resistance is a frictional force that opposes motion.
- This frictional force pushes in the opposite direction of motion
- Motion direction is downward due to the celerity caused by gravity.
Answer:
Explanation:
Radius = 9.5 x 10⁻² m
area of circle = 3.14 x (9.5 x 10⁻² )²
A = 283.38 x 10⁻⁴ m²
magnetic moment = area x current
M = 283.38 x 10⁻⁴ x 5
= 1416.9 x 10⁻⁴ Am²
Torque = MBsinθ
M is magnetic moment , B is magnetic field .
Max torque = 1416.9 x 10⁻⁴ x 3.4 x 10⁻³ , for θ = 90
= 4817.46 x 10⁻⁷
= 481.7 x 10⁻⁶
= 481.7 μ J
Energy = - MBcosθ
Max energy when θ = 180
MB = 4817.46 x 10⁻⁷ J
Min energy = - 4817.46 x 10⁻⁷ for θ = 0
Answer:C
Explanation:
If you are holding the ball that would be the ball would have potential energy since it it not moving. Once you drop the ball it will have kinetic energy since it’s moving. If you drop the ball from 6ft it will have more kinetic since it will have more time to accelerate. If you drop the ball from 2ft then it will have less kinetic energy since it is closer to the ground and won’t have beeping time to accelerate and get rid of the potential energy.