Answer:
1500
Step-by-step explanation:
The average rate of change of a function on the interval [a, b] is given by ...
rate of change = (f(b) -f(a))/(b -a)
On the interval [7, 9], the average rate of change is ...
(5760 -1920)/(9 -7) = 3840/2 = 1920
On the interval [4, 6], the average rate of change is ...
(945 -105)/(6 -4) = 840/2 = 420
The rate of change on the first interval is greater by ...
1920 -420 = 1500
Step-by-step explanation:
a(n) = a ( n - 1) - 17
a(1) = 20
a(2) = a ( 2 - 1) - 17
= a (1) - 17
= 20 - 17
= 3
Now
a(3) = a ( 3 - 1 ) - 17
= a (2) - 17
= 3 - 17
= - 14
Hope it will help you.
Answer:
<h2> </h2><h2>

</h2>
Step-by-step explanation:
<h3><em><u>Question</u></em><em><u>:</u></em><em><u>-</u></em></h3>
- To find the Binomial theorem form of
<h3><em><u>As</u></em><em><u> </u></em><em><u>we</u></em><em><u> </u></em><em><u>know</u></em><em><u>:</u></em><em><u>-</u></em></h3>
<em>As</em><em> </em><em>in</em><em> </em><em>Bin</em><em>omial</em><em> </em><em>theorem</em><em> </em><em>:</em><em>-</em>
<h3><em><u>Solution</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em></h3>

- <em>Hence</em><em>,</em><em> </em><em>on</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>Binomial</em><em> </em><em>theorem</em><em>,</em><em> </em>

- <em>On</em><em> </em><em>formatting</em><em> </em>

- <em>On</em><em> </em><em>further</em><em> </em><em>formatting</em><em>.</em><em> </em>

<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>required</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em>

Answer:
Cross sections perpendicular to the base and through the vertex will be triangles. Below, you can see a plane cutting through the pyramid, part of the pyramid removed, and the cross section. You could also take a slice parallel to the base. Cross sections parallel to the base will be hexagons.
Step-by-step explanation:
We want the final coordinate of K to become (-3,1). If you reflect across the y-axis, you transform

So, we need to move K to (3,1), and then reflect it across the y-axis. Since K starts at (-1,4), we have to move it 4 units to the right and 3 units down.