Answer:
The distance to the nearest tenth of a foot between the mechanic and pilot is 37.5 ft.
Step-by-step explanation:
The question states that both parts of Noshi's desk were shaped like trapezoids and both had a height of 3.
We know that the formula for area of a trapezoid is (a+b)/2 * h, where a and b are bases of the trapezoid and h is the height. Note: This is like any other form of trying to find the area, because we are doing base times height, however, we need to divide the sum of the bases by 2 to find the average base length.
Let's call the first trapezoid on the left Trapezoid A and the second slanted trapezoid Trapezoid B.
Area of Trapezoid A = (a+b)/2 * h = (5+8)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
Area of Trapezoid B = (a+b)/2 * h = (4+9)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
To find the area of Noshi's total desk, we simply need to add the areas of Trapezoid A and Trapezoid B together.
19.5 feet + 19.5 feet = 39 feet
Therefore, the area of Noshi's desk is 39 feet.
Hope this helps! :)
If you are talking about the binomial being expanded then it would be:
8x^3 + 12x^2y + 6xy^2 + y^3
The y in the second term is not part of the exponent
And since you are raising the binomial to the third, you would be using the third row of Pascal's triangle.
Hope this helped!
Answer: The angles of ΔA'B'C are congruent to the corresponding parts of the original triangle.
Step-by-step explanation:
Given : Triangle ABC was rotated 90 degrees clockwise. Then it underwent a dilation centered at the origin with a scale factor of 4.
A rotation is a rigid transformation that creates congruent images but dilation is not a rigid transformation, it creates similar images but not congruent.
Also, the corresponding angles of similar triangles are congruent.
Therefore, The angles of ΔA'B'C are congruent to the corresponding parts of the original triangle.