Well I don't know !
Let's work it out.
The gravitational force between two objects is
F = G · M₁·M₂ / R² .
'G' is the 'universal gravitational constant'. We could look it up.
'M₁' is the mass of one object
'M₂' is the mass of the other object
'R' is the distance between their centers.
It looks complicated, but stay with me. We can do this !
We know all the numbers, so we can calculate the force.
'G' is 6.67 x 10⁻¹¹ newton·meter² / kg² (I looked it up. You're welcome.)
'M₁' is 15 kg
'M₂' is 15 kg
'R' is 0.25 meter.
Now it's time to pluggum in.
F = G · M₁·M₂ / R²
= (6.67 x 10⁻¹¹ newton·meter² / kg²) · (15 kg) · (15 kg) / (0.25 m²)
= (6.67 x 10⁻¹¹ · 15 · 15 / 0.0625) N·m²·kg·kg / kg²·m²
= 2.4 x 10⁻⁷ Newton .
That a force equivalent to about 0.00000086 of an ounce.
This is the answer to part-a.
Concerning the answer to part-b ...
Personally, I could not detect this force, no matter what kind of equipment
I had. But I am just a poor schlepper engineer, educated in the last Century,
living out my days on Brainly and getting my kicks from YouTube videos.
I am not pushing the box to the envelope, or thinking outside the cutting
edge ... whatever.
I am sure there are people ... I can't name them, because they keep a
low profile, they stay under the radar, they don't attract a lot of media
attention, their work is not as newsworthy as the Kardashians, and plus,
they seldom call me or write to me ... but I know in my bones that there
are people who have measured the speed of light to NINE significant figures,
aimed a spacecraft accurately enough to take close-up pix of Pluto ten years
later, and detected gravity waves from massive blobs that merged 13 billion
years ago, and I tell you that YES ! THESE guys could detect and measure
a force of 0.86 micro-ounce if they felt like it !
Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
Answer:
(a) vo = 24.98m/s
(b) t = 5.09 s
Explanation:
(a) In order to calculate the the initial speed of the ball, you use the following formula:
(1)
y: vertical position of the ball = 2.44m
yo: initial vertical position = 0m
vo: initial speed of the ball = ?
g: gravitational acceleration = 9.8m/s²
t: time on which the ball is at 2.44m above the ground = 5.00s
You solve the equation (1) for vo and replace the values of the other parameters:

The initial speed of the ball is 24.98m/s
(b) To find the time the ball takes to arrive to the ground you use the equation (1) for y = 0m (ground) and solve for t:

The time that the ball takes to arrive to the ground is 5.09s
Answer:
There are no gaps in space between the photons as they travel. If you were to look at a wave then you'd come to a conclusion that indeed that there aren't any gaps unless they are specifically placed.The light from a distance star indeed spreads out and weakens as it travels, but this just reduces the wave strength and does not introduce gaps.
Answer:
The mass number is the product of number of protons and number of neutrons
The atomic number is the same as the mass number but just put amu next to the number