The answer would be [4, infinity)
Linear functions are usually of degree 1. They are a straight line. y=mx+b
Answer:
Let coordinates of vertex D be (x,y)
In parallelogram diagonals are bisect each other.
∴ Mid-point of AC= Mid-point of BD
⇒ (
2
3+(−6)
,
2
−4+2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,
2
−2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,−1)=(
2
−1+x
,
2
−3+y
)
Now,
⇒
2
−3
=
2
−1+x
⇒ −6=−2+2x
⇒ −4=2x
∴ x=−2
⇒ −1=
2
−3+y
⇒ −2=−3+y
⇒ 1=y
∴ y=1
∴ Coordinates of vertex D is (−2,1)
Combine like terms
-7y² + 6y² - 2y² = -3y²
4y + (-5y) - (-9y) = 4y - 5y + 9y = 8y
9 + 9 - (-2) = 9 + 9 + 2 = 20
-3y² + 8y + 20 is your answer
hope this helps