Answer:
The first four terms of the above sequence are 1, 6, 11, 16.
Step-by-step explanation:
A sequence is defined by the function f(n)=f(n-1)+5.
Where n represents the number of the term for n>1
First Put n = 2
f(2)=f(2-1)+5.
= f (1) + 5
= -4 + 5
= 1
Second Put n = 3
f(3)=f(3-1)+5.
= f (2) + 5
= 1 + 5
= 6
Third Put n = 4
f(4)=f(4-1)+5.
= f (3) + 5
= 6+ 5
= 11
Second Put n = 5
f(5)=f(5-1)+5.
= f (4) + 5
= 11 + 5
= 16
Therefore the first four terms of the above sequence are 1, 6, 11, 16.
Given:
The graph of a radical function.
To find:
The domain of the given radical function.
Solution:
We know that, domain is the set of input values or we can say domain is the set of x-values for which the function is defined.
From the given graph it is clear that, for each value of x there is a y-value. It means the function is defined for all real values of x. So,
Domain = Set of all real numbers.
Therefore, the correct option is A.
We are given statement : 3 more than a number then divided the result by 8.
We need to write an algebraic expression for it.
Let us assume unknown number be n.
3 more than n = (n+3).
Now, we need to divide that result (n+3) by 8.
So, we would get (n+3) divided by 8 =
.
<h3>Therefore, final expression is

</h3>
Answer: I think #2 is either A or C
Step-by-step explanation: Hope it helped! :)