Answer:
6s - 54
Step-by-step explanation:
Answer:
1. The scale factor here is 1.5
2. The scale factor here is 2/3
Step-by-step explanation:
Here, we shall be dealing with scales of triangles.
we have two triangles;
ABC and DEF
longest sides are in the ratio;
12 : 8
1. What scale factor translates DEF to ABC?
The ratio of the length can be beaten down to 3:2
So therefore, we can see that by multiplying the sides of of DEF by 1.5, we can arrive at the sides of ABC
So the scale factor here is 1.5
2. This is like the other way round of what we have above.
By multiplying the sides of ABC by 2/3, we shall have the sides of DEF
Answer:
a) Null and alternative hypothesis:

b) A Type I error is made when a true null hypothesis is rejected. In this case, it would mean a conclusion that the proportion is significantly bigger than 10%, when in fact it is not.
c) The consequences would be that they would be more optimistic than they should about the result of the investment, expecting a proportion of students that is bigger than the true population proportion.
d) A Type II error is made when a false null hypothesis is failed to be rejected. This would mean that, although the proportion is significantly bigger than 10%, there is no enough evidence and it is concluded erroneously that the proportion is not significantly bigger than 10%
e) The consequences would be that the investment may not be made, even when the results would have been more positive than expected from the conclusion of the hypothesis test.
Step-by-step explanation:
a) The hypothesis should be carried to test if the proportion of students that would eat there at least once a week is significantly higher than 10%.
Then, the alternative or spectulative hypothesis will state this claim: that the population proportion is significantly bigger than 10%.
On the contrary, the null hypothesis will state that this proportion is not significantly higher than 10%.
This can be written as:

Answer:
4.25 i think
Step-by-step explanation:
sorry i have not done these in a while it might be wrong
Answer:
x ≠ 4 or -2
Step-by-step explanation:
the denominator cannot be zero, so factor the bottom equation to get the zeros and those are the domain restrictions.
3x^2 - 6x - 24 ≠ 0
3(x^2 - 2x - 8) ≠ 0 (factor out a 3)
3(x - 4)(x + 2) ≠ 0 (factor equation)
x ≠ 4, x ≠ -2 (use zero product property to find zeros)