Answer:
The speed at point B is 5.33 m/s
The normal force at point B is 694 N
Explanation:
The length of the spring when the collar is in point A is equal to:

The length in point B is:
lB=0.2+0.2=0.4 m
The equation of conservation of energy is:
(eq. 1)
Where in point A: Tc = 1/2 mcVA^2, Ts=0, Vc=mcghA, Vs=1/2k(lA-lul)^2
in point B: Ts=0, Vc=0, Tc = 1/2 mcVB^2, Vs=1/2k(lB-lul)^2
Replacing in eq. 1:

Replacing values and clearing vB:
vB = 5.33 m/s
The balance forces acting in point B is:
Fc-NB-Fs=0

Replacing values and clearing NB:
NB = 694 N
Answer:
distance = 22.57 ft
superelevation rate = 2%
Explanation:
given data
radius = 2,300-ft
lanes width = 12-ft
no of lane = 2
design speed = 65-mph
solution
we get here sufficient sight distance SSD that is express as
SSD = 1.47 ut +
..............1
here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here
so put here value and we get
SSD = 1.47 × 65 ×2.5 +
solve it we get
SSD = 644 ft
so here minimum distance clear from the inside edge of the inside lane is
Ms = Rv ( 1 -
) .....................2
here Rv is = R - one lane width
Rv = 2300 - 6 = 2294 ft
put value in equation 2 we get
Ms = 2294 ( 1 -
)
solve it we get
Ms = 22.57 ft
and
superelevation rate for the curve will be here as
R =
..................3
here f is coefficient of friction that is 0.10
put here value and we get e
2300 = 
solve it we get
e = 2%
Answer:
1. All engines exhibit wear over time ⇒ <em>Synthetic Improves engine protection by resisting oil breakdown.</em>
Synthetic oil does not breakdown so easily which means that it protects the engine more and protects it from wearing.
2. Engines are cold at start-up and not while running ⇒ <em> Synthetic provides maximum protection in extreme hot and cold temperature conditions.</em>
By providing protection for the engine during cold and hot conditions, the engine will not be too cold when the car is started up.
3. If oil is thicker, engines lose power and efficiency ⇒ <em>Synthetic has greater resistance to oil thickening to maintain engine efficiency.</em>
Part of the characteristics of synthetic oil is that it does not get as thick as regular oil which means that the adverse effects of thick oil are spared on the engine.
Answer:
25 V
Explanation:
It is convenient to use Kirchoff's current law (KCL), which tells you the sum of currents into a node is zero. The node of interest is the top left node.
The currents into it are ...
20 mA + (-5 -Vo)/(2kΩ) -(Vo/(5kΩ)) = 0
20 mA -2.5 mA = Vo(1/(2kΩ) +1/(5kΩ)) . . . . add the opposite of Vo terms
(17.5 mA)(10/7 kΩ) = Vo = 25 . . . volts . . . . divide by the coefficient of Vo
_____
You will notice that the equation resolves to what you would get if you drew the Norton equivalent of the voltage source with its 2k impedance. You have two current sources, one of +20 mA, and one of -2.5 mA supplying current to a load of 2k║5k = (10/7)kΩ. KCL tells you the total current into the node is equal to the current through that load (out of the node).