Answer: the absolute static pressure in the gas cylinder is 82.23596 kPa
Explanation:
Given that;
patm = 79 kPa, h = 13 in of H₂O,
A sketch of the problem is uploaded along this answer.
Now
pA = patm + 13 in of H₂O ( h × density × g )
pA= 79 + (13 × 0.0254 × 9.8 × 1000/1000)
pA = 82.23596 kPa
the absolute static pressure in the gas cylinder is 82.23596 kPa
An algorithm is itself a general step-by-step solution of your problem. ... The most important point here is that you must use algorithms to solve problem, one way or the other. Most of the time it's better to think about your problem before you jump to coding - this phase is often called design.
Answer:
f(5)
Explanation:
Function notation is a precise way of giving information about a function without need for a lengthy written explanation. The most common function notation is f (x) which is interpreted as "f of x".
For the year 2005,
t = 2005 -2000
= 5
Using the function notation to represent the cost (in dollars) of a new Accord in 2005 is f(5)
Answer:
Flow velocity
50.48m/s
Pressure change at probe tip
1236.06Pa
Explanation:
Question is incomplete
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively
solution
In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe
please check attachment for complete solution and step by step explanation