- the last one ‘design meets all the criteria...’
Answer:
13.95
Explanation:
Given :
Vector A polar coordinates = ( 7, 70° )
Vector B polar coordinates = ( 4, 130° )
To find A . B we will
A ( r , ∅ ) = ( 7, 70 )
A = rcos∅ + rsin∅
therefore ; A = 2.394i + 6.57j
B ( r , ∅ ) = ( 4, 130° )
B = rcos∅ + rsin∅
therefore ; B = -2.57i + 3.06j
Hence ; A .B
( 2.394 i + 6.57j ) . ( -2.57 + 3.06j ) = 13.95
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ = / t₂
t₂ = t₁
t₂ = t₁ /
t₂ = ( / )t₁
t₂ = / × t₁
so we substitute
t₂ = 0.0049 / 0.0018 × 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer:
minimum flow rate provided by pump is 0.02513 m^3/s
Explanation:
Given data:
Exit velocity of nozzle = 20m/s
Exit diameter = 40 mm
We know that flow rate Q is given as
where A is Area
minimum flow rate provided by pump is 0.02513 m^3/s