9...
75 + 6 = 81
The square root of 81 = 9
Answer:
Angle CAD is 44 degrees
Angle ACD is 44 degrees
Angle ACB is 136 degrees
Angle ABC is 22 degrees
Explanation:
29. Triangle ADC is an isosceles triangle because it has two equal sides.
If segments AD and DC are congruent, then segment AC is the base and the base angles of an isosceles triangle are equal.
Let x be angle CAD.
Let's go ahead x;

Therefore, measure of angle CAD is 44 degrees.
30. Measure of angle ACD is 44 degrees (Base angles of an isosceles triangle are equal)
31. Let angle ACB be y,
Let's go ahead and find measure of angle ACB;

So measure of angle ACB is 136 degrees.
32. Let angle ABC be z.
Triangle ACB is also an isosceles triangle so the base angles are the same.
Let's go ahead and find z;

So measure of angle ABC is 22 degrees.
Solving the given inequality for d, we get...
6d + 15 < 50
6d + 15-15 < 50-15 <<-- subtract 15 from both sides
6d < 35
6d/6 < 35/6 <<--- divide both sides by 6
d < 5.83
Which means that d can be any of the values in this set: {0, 1, 2, 3, 4, 5}
The smallest d can be is 0. In this scenario, Jeremy pays the $15 registration but doesn't rent the camera at all
The largest d can be is 5. In this scenario, Jeremy rents the camera for 5 days
Any larger value of d is not allowed as it would make the total cost go over $50
Notice how I'm rounding down regardless how close 5.83 is to 6
Okay so first, area is length times width, so 1/4x*x would be first = 1/4(x^2)=64. Then area or x = 16 or -16
perimeter would be width times two plus length times two. I recommend using math papa to calculate these numbers.
Answer:
(294π +448) cm³ ≈ 1371.6 cm³
Step-by-step explanation:
The half-cylinder at the right end has a radius of 7 cm, as does the one on top. Together, the total length of these half-cylinders is 8 cm + 4cm = 12 cm. That is equivalent in volume to a whole cylinder of radius 7 cm that is 6 cm long.
The cylinder volume is ...
V = πr²h = π(7 cm)²(6 cm) = 294π cm³
__
The cuboid underlying the top half-cylinder has dimensions 4 cm by 8 cm by 14 cm (twice the radius). So, its volume is ...
V = LWH = (4 cm)(8 cm)(14 cm) = 448 cm³
Then the total volume of the composite figure is ...
(294π +448) cm³ ≈ 1371.6 cm³