The distance? If it is asking for the distance then its square root 313.
Answer:
- (x, y) = (3, 5)
- (x, y) = (1, 2)
Step-by-step explanation:
A nice graphing calculator app makes these trivially simple. (See the first two attachments.) It is available for phones, tablets, and as a web page.
__
The usual methods of solving a system of equations involve <em>elimination</em> or <em>substitution</em>.
There is another method that is relatively easy to use. It is a variation of "Cramer's Rule" and is fully equivalent to <em>elimination</em>. It makes use of a formula applied to the equation coefficients. The pattern of coefficients in the formula, and the formula itself are shown in the third attachment. I like this when the coefficient numbers are "too messy" for elimination or substitution to be used easily. It makes use of the equations in standard form.
_____
1. In standard form, your equations are ...
Then the solution is ...

__
2. In standard form, your equations are ...
Then the solution is ...

_____
<em>Note on Cramer's Rule</em>
The equation you will see for Cramer's Rule applied to a system of 2 equations in 2 unknowns will have the terms in numerator and denominator swapped: ec-bf, for example, instead of bf-ec. This effectively multiplies both numerator and denominator by -1, so has no effect on the result.
The reason for writing the formula in the fashion shown here is that it makes the pattern of multiplications and subtractions easier to remember. Often, you can do the math in your head. This is the method taught by "Vedic maths" and/or "Singapore math." Those teaching methods tend to place more emphasis on mental arithmetic than we do in the US.
Answer:
Step-by-step explanation:
its additive identity
Answer:
First, we need to find how far ahead Marshall was. Since he had been biking at 20 mph for one hour, he had gone 20 miles.
Next, we need to find how long it will take Brett to catch up to Marshall. In order to do this, we need to find how much faster Brett is going than Marshall. We do this by subtracting Marshall's speed from Brett's speed.
60 - 20 = 40. So, Brett is catching up to Marshall at 40 mph. Now, we figure out how long it will take for someone going 40 miles per hour to go 20 miles. We find this by dividing 40 miles per hour by 20. This is equal to 1/2 hour. So, it will take Brett 0.5 hours to catch up to Marshall. This is the same as A, so A is the correct answer.
We can check our answer by seeing how far Marshall and Brett will have gone. Marshall will have been biking for 1.5 hours, so we multiply 20 * 1.5 = 30. Marshall went 30 miles.
Brett drove for .5 hours at 60 mph, so he went 30 miles. Since Brett and Marshall went the same distance, our answer is correct.