Answer:converge at 
Step-by-step explanation:
Given
Improper Integral I is given as

integration of
is -
![I=\left [ -\frac{1}{x}\right ]^{\infty}_3](https://tex.z-dn.net/?f=I%3D%5Cleft%20%5B%20-%5Cfrac%7B1%7D%7Bx%7D%5Cright%20%5D%5E%7B%5Cinfty%7D_3)
substituting value
![I=-\left [ \frac{1}{\infty }-\frac{1}{3}\right ]](https://tex.z-dn.net/?f=I%3D-%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B%5Cinfty%20%7D-%5Cfrac%7B1%7D%7B3%7D%5Cright%20%5D)
![I=-\left [ 0-\frac{1}{3}\right ]](https://tex.z-dn.net/?f=I%3D-%5Cleft%20%5B%200-%5Cfrac%7B1%7D%7B3%7D%5Cright%20%5D)

so the value of integral converges at 
9514 1404 393
Answer:
y +1 = -3(x -3)
Step-by-step explanation:
The given point is (3, -1), and the given slope is -3. The form suggests you want the point-slope form of the equation for the line:
y -k = m(x -h) . . . . . . . . line with slope m through point (h, k)
Using the given values, the equation is ...
y -(-1) = -3(x -3)
y +1 = -3(x -3)
90% of <span>£41 = 90/100 × 41 = </span><span>£36.9
</span>£41 decreased by 90% = 41 - 36.9 = <span>£4.1</span>
Answer:0
Step-by-step explanation: