<em>If two pairs of corresponding angles in a pair of triangles are congruent, then the triangles are similar. We know this because if two angle pairs are the same, then the third pair must also be equal. When the three angle pairs are all equal, the three pairs of sides must also be in proportion.</em>
Apply division by 10 when one tenth of a number is required and apply multiplication by 10 when 10 times of a number is required.
<u>Solution:</u>
Need to determine what operation is required to get one-tenth of a number and 10 times of a number
To get one tenth of a number, divide the number by 10.
For example to get one – tenth of 100, divide it by 10, we get 10 as a result.

To get ten times of a number, multiply the number by 10
For example 10 times of 10 = 10 x 10 = 100
Hence apply division by 10 when one tenth of a number is required and apply multiplication by 10 when 10 times of a number is required.
Ooh, fun
what I would do is to make it a piecewise function where the absolute value becomse 0
because if you graphed y=x^2+x-12, some part of the garph would be under the line
with y=|x^2+x-12|, that part under the line is flipped up
so we need to find that flipping point which is at y=0
solve x^2+x-12=0
(x-3)(x+4)=0
at x=-4 and x=3 are the flipping points
we have 2 functions, the regular and flipped one
the regular, we will call f(x), it is f(x)=x^2+x-12
the flipped one, we call g(x), it is g(x)=-(x^2+x-12) or -x^2-x+12
so we do the integeral of f(x) from x=5 to x=-4, plus the integral of g(x) from x=-4 to x=3, plus the integral of f(x) from x=3 to x=5
A.

B.
sepearte the integrals
![\int\limits^{-5}_{-4} {x^2+x-12} \, dx = [\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-5}_{-4}=(\frac{-125}{3}+\frac{25}{2}+60)-(\frac{64}{3}+8+48)=\frac{23}{6}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E%7B-5%7D_%7B-4%7D%20%7Bx%5E2%2Bx-12%7D%20%5C%2C%20dx%20%3D%20%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E2%7D%7B2%7D-12x%5D%5E%7B-5%7D_%7B-4%7D%3D%28%5Cfrac%7B-125%7D%7B3%7D%2B%5Cfrac%7B25%7D%7B2%7D%2B60%29-%28%5Cfrac%7B64%7D%7B3%7D%2B8%2B48%29%3D%5Cfrac%7B23%7D%7B6%7D)
next one
![\int\limits^{-4}_3 {-x^2-x+12} \, dx=-1[\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-4}_{3}=-1((-64/3)+8+48)-(9+(9/2)-36))=\frac{343}{6}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E%7B-4%7D_3%20%7B-x%5E2-x%2B12%7D%20%5C%2C%20dx%3D-1%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E2%7D%7B2%7D-12x%5D%5E%7B-4%7D_%7B3%7D%3D-1%28%28-64%2F3%29%2B8%2B48%29-%289%2B%289%2F2%29-36%29%29%3D%5Cfrac%7B343%7D%7B6%7D)
the last one you can do yourself, it is

the sum is

so the area under the curve is
Answer:
Its Number of Seats
Step-by-step explanation:
Explanation:
f(x) = (x-4)(x+2)
1) For x-intercept, y will be 0
<u />
<u>x-intercept</u>: (4, 0), (-2, 0)
2) For vertex: x = -b/2a where ax² + bx + c
<u>Quadratic function</u>:
<u>vertex</u>:
y: (x-4)(x+2) = (1-4)(1+2) = -9
ordered pair of vertex: (1, -9)
3) For y-intercept, x will be 0
<u>y-intercept</u>: (0, -8)