Answer:
C(x) = 5x + 20 (for members)
C(x) = 3.5x (for non-members)
Step-by-step explanation:
Cost of membership = $20
Price of a game per month = $5
So, the linear equation to compute the total cost for a member can be computed by:
C(x) = 5x + 20
where x is the number of games per month
On the other hand, non-members can get one more game per month for $7 which means they get 2 games for $7. The price for a single game is $7/2 = $3.5 a month.
The linear equation to compute the total cost for a non-member is:
C(x) = 3.5x
where x is the number of games per month.
The following system of equations can be used to decide whether to become a member or not, by substituting the number of games in place of x and finding out the total cost.
C(x) = 5x + 20 (for members)
C(x) = 3.5x (for non-members)
Answer:
L = 60
Step-by-step explanation:
Answer:
- The sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is <u>translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis</u>.
Explanation:
By inspection (watching the figure), you can tell that to transform the triangle XY onto triangle X"Y"Z", you must slide the former 5 units to the left, 1 unit down, and, finally, reflect it across the x-axys.
You can check that analitically
Departing from the triangle: XYZ
- <u>Translation 5 units to the left</u>: (x,y) → (x - 5, y)
- Vertex X: (-6,2) → (-6 - 5, 2) = (-11,2)
- Vertex Y: (-4, 7) → (-4 - 5, 7) = (-9,7)
- Vertex Z: (-2, 2) → (-2 -5, 2) = (-7, 2)
- <u>Translation 1 unit down</u>: (x,y) → (x, y-1)
- (-11,2) → (-11, 2 - 1) = (-11, 1)
- (-9,7) → (-9, 7 - 1) = (-9, 6)
- (-7, 2) → (-7, 2 - 1) = (-7, 1)
- <u>Reflextion accross the x-axis</u>: (x,y) → (x, -y)
- (-11, 1) → (-11, -1), which are the coordinates of vertex X"
- (-9, 6) → (-9, -6), which are the coordinates of vertex Y""
- (-7, 1) → (-7, -1), which are the coordinates of vertex Z"
Thus, in conclusion, it is proved that the sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis.
Answer:
There are 2^3 = 8 possible outcomes after tossing a fair coin fairly 3 times. The 8 possible outcomes are: TTT, HTT, THT, TTH, HHT, HTH, THH, HHH. Exactly 2 of 8 possible outcomes result in 3 of the same faces showing up.
Step-by-step explanation:
<span>137.5 because first you divide 110 by 80 and then mupilty the answer by 100
</span>