The question states that both parts of Noshi's desk were shaped like trapezoids and both had a height of 3.
We know that the formula for area of a trapezoid is (a+b)/2 * h, where a and b are bases of the trapezoid and h is the height. Note: This is like any other form of trying to find the area, because we are doing base times height, however, we need to divide the sum of the bases by 2 to find the average base length.
Let's call the first trapezoid on the left Trapezoid A and the second slanted trapezoid Trapezoid B.
Area of Trapezoid A = (a+b)/2 * h = (5+8)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
Area of Trapezoid B = (a+b)/2 * h = (4+9)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
To find the area of Noshi's total desk, we simply need to add the areas of Trapezoid A and Trapezoid B together.
19.5 feet + 19.5 feet = 39 feet
Therefore, the area of Noshi's desk is 39 feet.
Hope this helps! :)
Answer:
(i) number of student passed in math is 60
(ii) number of student passed in science is 70
only math is 10
and only science is 20
21/4 is equivalent to...
4 x 5 = 20
so, 21/4 = 5 1/4
5 1/4 = 5.25
5 1/4 = 5 2/8 = 42/8
42/8 = 84/16
Quadrant is III so, sign would be negative for Sec.
Now, we know, csc = H / P
So, H = 4, P = 3
Calculate for B,
B² = H² - P²
B² = 4² - 3²
B² = 16 - 9
B = √7
We know, sec Ф = H / B = 4 / √7
We can write it as: -4√7 / 7 [ -ve sign for 3rd quadrant ]
In short, Your Answer would be Option B
Hope this helps!
<span><span>
The correct answers are:</span><span>
(1) The vertical asymptote is x = 0
(2) The horizontal asymptote is y = 0
</span><span>
Explanation:</span><span>(1) To find the vertical asymptote, put the denominator of the rational function equals to zero.
Rational Function = g(x) = </span></span>

<span>
Denominator = x = 0
Hence the vertical asymptote is x = 0.
(2) To find the horizontal asymptote, check the power of x in numerator against the power of x in denominator as follows:
Given function = g(x) = </span>

<span>
We can write it as:
g(x) = </span>

<span>
If power of x in numerator is less than the power of x in denomenator, then the horizontal asymptote will be y=0.
If power of x in numerator is equal to the power of x in denomenator, then the horizontal asymptote will be y=(co-efficient in numerator)/(co-efficient in denomenator).
If power of x in numerator is greater than the power of x in denomenator, then there will be no horizontal asymptote.
In above case, 0 < 1, therefore, the horizontal asymptote is y = 0
</span>