It depends on what the question looks like. If it looks like this:
(6-3)(2/5)=
(3)(0.4)=
1.2
4*d^(-3)*d^18 = 4*d^(18-3) = 4*d^(15). The trick here is to combine the exponents.
Another way to write this problem would be:
4*d^18
---------- . Here d^18 divided by d^3 results in d^15, so again the final
d^3 answer is 4*d^15.
The two planes are flying on the two legs of a right triangle.
The straight distance between them is the hypotenuse of the triangle.
Since the speeds are in mph, let's work the time in hours.
Call the time 'H' that we're looking for.
It's the number of hours after they both take off that they're 650 miles apart.
After 'H' hours, the first plane has gone 500H miles north.
After 'H' hours, the second plane has gone 1200H miles east.
After 'H' hours, they are 650 miles apart.
Do you remember this for a right triangle ? ==> A² + B² = C²
(500H)² + (1200H)² = (650)²
250,000H² + 1,440,000H² = 422,500
1,690,000 H² = 422,500
H² = (422,500) / (1,690,000) = 0.25
H = √0.25 = 1/2 hour = 30 minutes
The number of students that are on the track team are 18.
The number of students that are on the baseball team are 15.
<h3>What are the linear equations that represent the question?</h3>
a + b = 33 equation 1
a - b = 3 equation 2
Where:
- a = number of students that are on the track team
- b = number of students that are on the baseball team
<h3>How many
students that are on the
baseball team?</h3>
Subtract equation 2 from equation 1
2b = 30
Divide both sides by 2
b = 30/2 = 15
<h3>How many
students that are on the track
team?</h3>
Subtract 15 from 33: 33 - 15 = 18
To learn more about simultaneous equations, please check: brainly.com/question/25875552
#SPJ1