Answer:
B) \sqrt{30} - 3 \sqrt{2} + \sqrt{55} - \sqrt{33} \div 2
Step-by-step explanation:
Step 1: First we have to get rid off the roots in the denominator.
To do that, we have to multiply the numerator and the denominator by the conjugate of √5 + √3.
The conjugate of √5 + √3 is √5 - √3.
Now multiply given expression with √5 - √3
(√6 + √11) (√5 - √3)
------------- x -----------
(√5 + √3) (√5 - √3)
Step 2: Multiply the numerators and the denominators.
√6√5 - √6√3 +√11√5 -√11√3
------------------------------------------
(√5)^2 - (√3)^2
Now let's simplify to get the answer.
√30-√18 +√55 - √33
-----------------------------
5 - 3
= √30 -3√2 +√55 [√18 = √9√2 = 3√2]
--------------------------
2
The answer is \sqrt{30} - 3 \sqrt{2} + \sqrt{55} - \sqrt{33} \div 2
Thank you.
Answer: 189
All Steps and Information Found in Image.
Hope This Helped!
Answer:
C. ![f(x)=\sqrt[3]{-x} -1](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7B-x%7D%20-1)
Step-by-step explanation:
Consider graph of the parent function (red curve in attached diagram)
![g(x)=\sqrt[3]{x}](https://tex.z-dn.net/?f=g%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D)
First, multiply it by -1 to get function
![h(x)=-\sqrt[3]{x}](https://tex.z-dn.net/?f=h%28x%29%3D-%5Csqrt%5B3%5D%7Bx%7D)
Then translate the graph of the function h(x) 1 unit down, then you'll get the function
![f(x)=-\sqrt[3]{x} -1\\ \\ \text{or}\\ \\f(x)=\sqrt[3]{-x} -1](https://tex.z-dn.net/?f=f%28x%29%3D-%5Csqrt%5B3%5D%7Bx%7D%20-1%5C%5C%20%5C%5C%20%5Ctext%7Bor%7D%5C%5C%20%5C%5Cf%28x%29%3D%5Csqrt%5B3%5D%7B-x%7D%20-1)
The graph of the function f(x) is represented by the blue curve in attached diagram
35 4's were used when writing this book