1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
11

Cost to store: $45 markup: 35% what would be the selling price?

Mathematics
1 answer:
ahrayia [7]3 years ago
8 0

the answer is 60.75 you had to multiply then add


You might be interested in
What are the values of v and w?
Debora [2.8K]

Answer: i think 130 and 80

Step-by-step explanation: sorry if wrong

3 0
2 years ago
Read 2 more answers
Consider the parabola given by the equation: f(x) = 4x² - 6x - 8 Find the following for this parabola: A) The vertex: Preview B)
jeyben [28]

Answer:

The vertex: (\frac{3}{4},-\frac{41}{4} )

The vertical intercept is: y=-8

The coordinates of the two intercepts of the parabola are (\frac{3+\sqrt{41} }{4} , 0) and (\frac{3-\sqrt{41} }{4} , 0)

Step-by-step explanation:

To find the vertex of the parabola 4x^2-6x-8 you need to:

1. Find the coefficients <em>a</em>, <em>b</em>, and <em>c </em>of the parabola equation

<em>a=4, b=-6, \:and \:c=-8</em>

2. You can apply this formula to find x-coordinate of the vertex

x=-\frac{b}{2a}, so

x=-\frac{-6}{2\cdot 4}\\x=\frac{3}{4}

3. To find the y-coordinate of the vertex you use the parabola equation and x-coordinate of the vertex (f(-\frac{b}{2a})=a(-\frac{b}{2a})^2+b(-\frac{b}{2a})+c)

f(-\frac{b}{2a})=a(-\frac{b}{2a})^2+b(-\frac{b}{2a})+c\\f(\frac{3}{4})=4\cdot (\frac{3}{4})^2-6\cdot (\frac{3}{4})-8\\y=\frac{-41}{4}

To find the vertical intercept you need to evaluate x = 0 into the parabola equation

f(x)=4x^2-6x-8\\f(0)=4(0)^2-6\cdot 0-0\\f(0)=-8

To find the coordinates of the two intercepts of the parabola you need to solve the parabola by completing the square

\mathrm{Add\:}8\mathrm{\:to\:both\:sides}

x^2-6x-8+8=0+8

\mathrm{Simplify}

4x^2-6x=8

\mathrm{Divide\:both\:sides\:by\:}4

\frac{4x^2-6x}{4}=\frac{8}{4}\\x^2-\frac{3x}{2}=2

\mathrm{Write\:equation\:in\:the\:form:\:\:}x^2+2ax+a^2=\left(x+a\right)^2

x^2-\frac{3x}{2}+\left(-\frac{3}{4}\right)^2=2+\left(-\frac{3}{4}\right)^2\\x^2-\frac{3x}{2}+\left(-\frac{3}{4}\right)^2=\frac{41}{16}

\left(x-\frac{3}{4}\right)^2=\frac{41}{16}

\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}

x_1=\frac{\sqrt{41}+3}{4},\:x_2=\frac{-\sqrt{41}+3}{4}

4 0
3 years ago
1/3x=5/12 show your work
insens350 [35]

Answer:

4/5 or 0.8

Step-by-step explanation:

1/3x = 5/12

<em>cross</em><em> </em><em>multiply</em>

(12×1) = (5×3x)

<em>divide</em><em> </em><em>through</em> <em>by</em> <em>1</em><em>5</em>

x = 12/15

x = 4/5 <em>o</em><em>r</em><em> </em>0.8

3 0
3 years ago
Test 1. Give the appropriate factoring technique and factors of the following polynomials.
shutvik [7]
1) 5t^2 (1 + 6t)
2) 4x^3y^5 (5x + 2y)
3) (5r + 6x)(5r - 6x)
4) (x + 10)(x - 10)
5) (x - 3)^2
6) (x -5)(x - 3)
7) 3(16r^3 + 9)
8) 8(c^3 + 8d^3)
9) (2r - 125)(4r^2 + 250r + 15625)
10) (c + 3)(c - 1)
3 0
2 years ago
What is A∪ϕ and A∩ϕ for a set A?​
vodomira [7]

Answer:

1 ans A second phi okay yed

4 0
3 years ago
Other questions:
  • Solve for x ???????????
    10·1 answer
  • Ne v er mind ignore this comment and get points for free
    5·2 answers
  • An area of 1000ft^2is not possible explain why this is true
    13·1 answer
  • On the school playground, the slide is 12 feet due west of the tire swing and 16 feet due south of the monkey bars. What is the
    13·1 answer
  • The area of the base is 1·/4ft^2 . What is the volume of the cube?
    14·2 answers
  • HELPS MEH PLZ + 20 <br> its not hard to help me
    15·2 answers
  • The function y = a · bx models ____ for a &gt; 0 and 0 &lt; b &lt; 1.
    15·1 answer
  • Answer please !<br> solve<br> 62 + k = 135<br><br> k = ?
    14·2 answers
  • Simplify<br> 7xy^2z^3- 4xy^2z^3+2x^2yz^2-3xy^2z^3
    6·1 answer
  • a manufacturer currently produces 1500 cars per month. if production increases by 10% find the new number of cars produced in a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!