Answer:
Hope it helps u
Explanation:
They do not get infected with tetanus because they have already been vaccinated which means there are white blood cells and antibodies ready to fight tetanus.
Their immune system is safe because the antibodies won’t let them feel sick.
We are well aware that there are two stages of photosynthesis:
- Light dependent reactions
- Light independent reactions/ Calvin cycle/ dark reactions.
Calvin cycle or light-independent reactions:
This comprise the process during which carbon dioxide enters into the leaves of plants and passes through series of steps to form sugar or food. This process depends on the supply of ATP, (the ATP that is formed previously during light dependent reactions).
Now there are three stages of Calvin cycle:
- 1) carbon fixation
- 2) reduction
- 3) regeneration
During the process of carbon fixation CO2 combines with a 5-carbon compound called RuBP or ribulose-1,5-bisphosphate which results in the synthesis of a 6-carbon compound that splits up in to 2 three carbon compounds called phosphoglyceric acid (3-PGA).
Here out focus will be the process of Reduction.
Reduction is the second stage of Calvin cycle during which phosphoglyceric acid (3-PGA) is converted to glyceraldehyde-3-phosphate (G3P) that is a sugar. During the process of reduction, energy in the form of ATP and NADPH are used for the conversion of 3-PGA to G3P. As 3-PGA is reduced to G3P, therefore this process is known as reduction.
After reduction, a series of reactions occur that lead to the synthesis of glucose but since focus of our question was reduction, so you can see more details of the process in attached figure.
Hope it helps!
The bond between CH2 and P of phosphate through O is called phosphoester bond. Only one such bond is present in both AMP and ADP.Link of phosphate groups through O by elimination of water molecule is called phosphoanhydride bond.In AMP, only single phosphate group present so no phosphoanhydride bond is present. But inADP, two phosphate groups are linked by one phospoanhydride bond.AMP 1 0ADP 1 1
The energy for ATP synthesis comes from organic molecules (such as carbohydrates), or from sunlight, or from inorganic electron donors. We can classify organisms according to their source of energy and organic carbon:
<span><span>heterotrophs – get energy and organic carbon from metabolism of pre-existing organic compounds (food)</span><span>photoautotrophs – use energy from sunlight to make ATP and their own organic carbon compounds from carbon dioxide chemoautotrophs</span><span> – use energy from inorganic chemicals to make ATP and their own organic carbon compounds from carbon dioxide</span></span>
Metabolic pathways carry out reactions that capture energy from these various sources (organic compounds, sunlight or chemicals) and couple them to synthesis of ATP from ADP.