There is no solutions to these linear equations. in order to find how many solutions there are, you first need to solve for the first variable in one of the equations, then substitute the result into the other equation. since both equations are almost the same and the same format, it won't have any solutions.
hope this helped, God bless!
let's bear in mind that sin(θ) in this case is positive, that happens only in the I and II Quadrants, where the cosine/adjacent are positive and negative respectively.
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{5}}{\stackrel{hypotenuse}{6}}\qquad \impliedby \textit{let's find the \underline{adjacent side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{6^2-5^2}=a\implies \pm\sqrt{36-25}\implies \pm \sqrt{11}=a \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B6%7D%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B6%5E2-5%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B36-25%7D%5Cimplies%20%5Cpm%20%5Csqrt%7B11%7D%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

7400 grams is the answer.
Simplemente necesitas restar tres de siete y dejar tu denominador como 4. Tu respuesta es 4/4, que es lo mismo que 1.
Measure the lengths of the runways in inches and then times your answer by 700 and then round that answer.