So we got the real axis and the imaginary axis
we just need to find the average of the 2 points
remember
midpoint of (x1,y1) and (x2,y2) is
((x1+x2)/2,(y1+y2)/2)
so
average of 3 and -8 is -5/2
average of -5i and 2i is -3/2i
center is -5/2-3/2i
Answer:
b: Normal Distribution
Step-by-step explanation:
Answer:
48
Step-by-step explanation:
![y=x^5-3\\ y'=5x^4\\\\ 5x^4=0\\ x=0\\ 0\in [-2,1]\\\\ y''=20x^3\\\\ y''(0)=20\cdot0^3=0](https://tex.z-dn.net/?f=y%3Dx%5E5-3%5C%5C%20y%27%3D5x%5E4%5C%5C%5C%5C%205x%5E4%3D0%5C%5C%20x%3D0%5C%5C%200%5Cin%20%5B-2%2C1%5D%5C%5C%5C%5C%20y%27%27%3D20x%5E3%5C%5C%5C%5C%0Ay%27%27%280%29%3D20%5Ccdot0%5E3%3D0)
The value of the second derivative for

is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of

is always positive for

. That means at

there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval
![[-2,1]](https://tex.z-dn.net/?f=%5B-2%2C1%5D)
.
The function

is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.
The answer is 78
If you multiply 17x6 you get 102
102 equals the whole rectangle after that you need to get rid of the part that’s not there
so you multiply 8x3 which equals 24
you then subtract 24 from 102 and get 78