The velocity of sound in at 300C is 511.3 m/s.
Explanation:
The equation that gives the speed of sound in ar as a function of the air temperature is the following:

where
T is the temperature of the air, measured in Celsius degrees
In this problem, we want to find the speed of sound in ar for a temperature of

Substituting into the equation, we find:

So, the velocity of sound in at 300C is 511.3 m/s.
Learn more about sound waves:
brainly.com/question/4899681
#LearnwithBrainly
Answer:
Marie Curie
Explanation:
I hope to see you helped :D?
It's true IF ' m ' stands for mass and ' v ' stands for acceleration. Otherwise it's false.
I would say by putting two fingers under your chin or putting two fingers on the back of your wrist, hope i helped ! :)
Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)
Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)
Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)
Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)