Answer:
25.33 rpm
Explanation:
M = 100 kg
m1 = 22 kg
m2 = 28 kg
m3 = 33 kg
r = 1.60 m
f = 20 rpm
Let the new angular speed in rpm is f'.
According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.
Initial angular momentum = final angular momentum
(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =
(1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'
(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'
( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'
2660 = 105 x f'
f' = 25.33 rpm
Weight equals mass times gravitational acceleration=400N, so mass=400/9.8=41kg approx.
Answer:
Minimum height of metal = 5 inches
Explanation:
Volume of the cylindrical metal = πR²H = 125π
cancelling out π on both sides
R²H = 125
Hence it can be deduced that R² = 25 and H = 5
Hence minimum height of metal = 5 inches
The answer to the question is A
Answer:
5.95 A
Explanation:
From the question
R = ρL/A..................... Equation 1
Where R = resistance of the tungsten wire, ρ = Resistivity of the tungsten wire, L = length, A = cross sectional area.
Given: L = 1.5 m, A = 0.8 mm² = 0.8×10⁻⁶ m, ρ = 5.60×10⁻⁸ Ω.m
Substitute these values into equation 1
R = 1.5(5.60×10⁻⁸)/0.8×10⁻⁶
R = 0.084 Ω.
Finally, using Ohm law,
V = IR
Where V = Voltage, I = current
Make I the subject of the equation
I = V/R............... Equation 2
I = 0.5/0.084
I = 5.95 A