Answer:
a. Acceleration, a = 1.88 m/s²
b. Time, t = 7.87 seconds.
Explanation:
Given the following data;
Initial velocity, U = 14.5m/s
Final velocity, V = 29.3m/s
Distance, S = 172m
a. To find the acceleration of the speedboat;
We would use the third equation of motion;
V² = U² + 2aS
Substituting into the formula
29.3² = 14.5² + 2a*172
858.49 = 210.25 + 344a
344a = 858.49 - 210.25
344a = 648.24
a = 648.24/344
Acceleration, a = 1.88 m/s²
b. To find the time;
We would use the first equation of motion;
V = U + at
29.3 = 14.5 + 1.88t
1.88t = 29.3 - 14.5
1.88t = 14.8
Time, t = 14.8/1.88
Time, t = 7.87 seconds.
Answer:
Explanation:
charge, q = 1.6 x 10^-19 C
distance, r = 911 nm = 911 x 10^-9 m
The Coulomb's force is given by


F = 2.78 x 10^-16 N
The force between the electron and the proton is 2.78 x 10^-16 N.
Principles<span> of </span>arc welding<span>. </span>Arc welding<span> is a </span>welding<span> process, in which heat is generated by an </span>electric arc<span> struck between an electrode and the work piece. </span>Electric arc<span> is luminous</span>electrical<span> discharge between two electrodes through ionized gas.</span>
Enclosed is some guidance algebra.I find this q a little confusing. It quotes "RC" which usually makes me think of electrical circuits and time constants based on converting calculating RC value and equating that to t for one time constant then 2RC for two time constants etc. The theory being that after 5 time constants - 5RC - a circuit is stable. BUT, this q then goes on to mention HALF LIFE. The curves for both half life and time constant are both exponential, as in the number e to the power of something, but the algebra is slightly different. I hope my algebra is ok.
Answer:
122.5 N/m
Explanation:
According to the law of conservation of energy, if there is no air resistance or frictional forces, the initial elastic potential energy of the spring toy is entirely converted into gravitational potential energy when the toy reaches the highest point.
Therefore, we can write:

where the term on the left is the initial elastic potential energy while the term on the right is the gravitational potential energy, and where
k is the spring constant
x = 0.02 m is the compression of the spring
m = 0.01 kg is the mass of the toy
h = 0.25 m is the height reached by the toy
is the acceleration due to gravity
Solving for k,
