Answer:
How to solve your problem
−
7
2
−
2
2
+
3
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+y^{3}y-2y+5y^{3}-2y
−7y2−2y2+y3y−2y+5y3−2y
Simplify
1
Combine exponents
−
7
2
−
2
2
+
3
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+{\color{#c92786}{y^{3}y}}-2y+5y^{3}-2y
−7y2−2y2+y3y−2y+5y3−2y
−
7
2
−
2
2
+
4
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+{\color{#c92786}{y^{4}}}-2y+5y^{3}-2y
−7y2−2y2+y4−2y+5y3−2y
2
Combine like terms
−
7
2
−
2
2
+
4
−
2
+
5
3
−
2
{\color{#c92786}{-7y^{2}}}{\color{#c92786}{-2y^{2}}}+y^{4}-2y+5y^{3}-2y
−7y2−2y2+y4−2y+5y3−2y
−
9
2
+
4
−
2
+
5
3
−
2
{\color{#c92786}{-9y^{2}}}+y^{4}-2y+5y^{3}-2y
−9y2+y4−2y+5y3−2y
3
Combine like terms
−
9
2
+
4
−
2
+
5
3
−
2
-9y^{2}+y^{4}{\color{#c92786}{-2y}}+5y^{3}{\color{#c92786}{-2y}}
−9y2+y4−2y+5y3−2y
−
9
2
+
4
−
4
+
5
3
-9y^{2}+y^{4}{\color{#c92786}{-4y}}+5y^{3}
−9y2+y4−4y+5y3
4
Rearrange terms
−
9
2
+
4
−
4
+
5
3
{\color{#c92786}{-9y^{2}+y^{4}-4y+5y^{3}}}
−9y2+y4−4y+5y3
4
+
5
3
−
9
2
−
4
{\color{#c92786}{y^{4}+5y^{3}-9y^{2}-4y}}
y4+5y3−9y2−4y
Solution
4
+
5
3
−
9
2
−
4
Answer:
Step-by-step explanation:
soulution:
given, 2x +2x = 16 <em>-</em> <em>2x</em> + 3y = 14
2x <em>+ 2x</em> = <em>-2y </em>+3y = 14 -16
4x = y = -2
y = 4x = -2
y = x = 4/-2
x = y = <u><em>-2 ans</em></u>
The student will have $135 in her bank account at the end of the ninth week. You can fine this out by finding out the amount she deposits a week and to do this you would take the $30 and divide it by 2 because she had $30 at the end of the second week.
30/2=15
So you see that the student deposits $15 each week, so to find out how much money she will have in 9 weeks you will multiply her $15 by 9.
15x9=135
So the student will have $135 at the end of the ninth week.
Answer:
8.2+/-0.25
= ( 7.95, 8.45) years
the 95% confidence interval (a,b) = (7.95, 8.45) years
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 8.2 years
Standard deviation r = 1.1 years
Number of samples n = 75
Confidence interval = 95%
z value(at 95% confidence) = 1.96
Substituting the values we have;
8.2+/-1.96(1.1/√75)
8.2+/-1.96(0.127017059221)
8.2+/-0.248953436074
8.2+/-0.25
= ( 7.95, 8.45)
Therefore the 95% confidence interval (a,b) = (7.95, 8.45) years
Answer:
The greatest common factor is 2
Step-by-step explanation:
the greatest common factor is 2 because 6 98 and 140 are all numbers that can be multiplied by 2