Step-by-step explanation:
Move expression to the left side and change its sign
5
y
−
3
+
10
y
2
−
y
−
6
−
y
y
+
2
=
0
Write
−
y
as a sum or difference
5
y
−
3
+
10
y
2
+
2
y
−
3
y
−
6
−
y
y
+
2
=
0
Factor out
y
and
−
3
from the expression
5
y
−
3
+
10
y
(
y
+
2
)
−
3
(
y
+
2
)
−
y
y
+
2
=
0
Factor out
y
+
2
from the expression
5
y
−
3
+
10
(
y
+
2
)
(
y
−
3
)
−
y
y
+
2
=
0
Write all numerators above the least common denominator
5
(
y
+
2
)
+
10
−
y
(
y
−
3
)
(
y
+
2
)
(
y
−
3
)
=
0
Distribute
5
and
−
y
through the parenthesis
5
y
+
10
+
10
−
y
2
+
3
y
(
y
+
2
)
(
y
−
3
)
=
0
Collect the like terms
8
y
+
20
−
y
2
(
y
+
2
)
(
y
−
3
)
=
0
Use the commutative property to reorder the terms
−
y
2
+
8
y
+
20
(
y
+
2
)
(
y
−
3
)
=
0
Write
8
y
as a sum or difference
−
y
2
+
10
y
−
2
y
+
20
(
y
+
2
)
(
y
−
3
)
=
0
Factor out
−
y
and
−
2
from the expression
−
y
(
y
−
10
)
−
2
(
y
−
10
)
(
y
+
2
)
(
y
−
3
)
=
0
Factor out
−
(
y
−
10
)
from the expression
−
(
y
−
10
)
(
y
+
2
)
(
y
+
2
)
(
y
−
3
)
=
0
Reduce the fraction with
y
+
2
−
y
−
10
y
−
3
=
0
Determine the sign of the fraction
−
y
−
10
y
−
3
=
0
Simplify
10
−
y
y
−
3
=
0
When the quotient of expressions equals
0
, the numerator has to be
0
10
−
y
=
0
Move the constant,
10
, to the right side and change its sign
−
y
=
−
10
Change the signs on both sides of the equation
y
=
10
Check if the solution is in the defined range
y
=
10
,
y
≠
3
,
y
≠
−
2
∴
y
=
10
Probability=number of specific outcomes / total number of possible outcomes...
Since they want to know the probability of getting all of the colors the probability is just one.
The sum of all probabilities is always equal to one. In this case:
1/4+1/4+1/4+1/4=1
The first option .
.................................