The answer is 10 ..............................
Twelve people join hands for a circle dance.In how many ways can they do this? Suppose six of these people are men, and the other six are women. In how many ways can they join hands for a circle dance, assuming they alternate in gender around the circle
Answer:
86400 ways
Step-by-step explanation:
Since the circle can be rotated, the number of ways to arrange a distinct number of n objects in a circle will be (n−1)!.
Now, if we rotate the circle with the six women, we will see that there are 5! ways with which they can be placed in the circle.
After picking the places for the women, we will now fill each gap between two women with a man.
We have 6 men. Thus, number of ways to arrange the men is 6!
Thus,number of ways they can join hands for a circle dance, assuming they alternate in gender around the circle = 5! × 6! = 86400 ways
Answer:
C
Step-by-step explanation:
Let's just look at the point G(3) = 3
this point only occurs through one equation which is
g(x) = (1/3)x^2
Answer:
1 false
2 true
3 true
4 false
5 true
Step-by-step explanation:
f(a) = (2a - 7 + a^2) and g(a) = (5 – a).
1 false f(a) is a second degree polynomial and g(a) is a first degree polynomial
When added together, they will be a second degree polynomial
2. true When we add and subtract polynomials, we still get a polynomial, so it is closed under addition and subtraction
3. true f(a) + g(a) = (2a - 7 + a^2) + (5 – a)
Combining like terms = a^2 +a -2
4. false f(a) - g(a) = (2a - 7 + a^2) - (5 – a)
Distributing the minus sign (2a - 7 + a^2) - 5 + a
Combining like terms a^2 +3a -12
5. true f(a)* g(a) = (2a - 7 + a^2) (5 – a).
Distribute
(2a - 7 + a^2) (5) – (2a - 7 + a^2) (a)
10a -35a +5a^2 -2a^2 -7a +a^3
Combining like term
-a^3 + 3 a^2 + 17 a - 35
iedikdtep-by-step explanation: