Answer:
Step-by-step explanation:
A man steps out of a plane at 4,000m of height above the ground.The point at which he jumps out of the plane would make a good reference point. However, if his acceleration is going to change as a result of him opening his parachute 2000m above the ground, a good reference point would be there. Keep in mind though, that his velocity at that instant would need to be known for it to be useful- otherwise the airplane reference point would be just as good with appropriate modeling....
I believe your answer is C
The rule for a reflection over the x -axis is (x,y)→(x,−y) .
let's notice something, the parabola is a vertical one, so the squared variable is the x, and is opening downwards, meaning the x² will have a negative coefficient.
the distance from the vertex to the directrix/focus is the amount of "p" units, let's see in the graph, the distance from the vertex to the directrix is 2, and since the parabola is opening downwards, "p" is a negative 2, p = -2. The vertex is of course at (0, 2).
![\bf \textit{parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{array}{llll} vertex\ ( h, k)\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=0\\ k=2\\ p=-2 \end{cases}\implies 4(-2)(y-2)=(x-0)^2\implies -8(y-2)=x^2 \\\\\\ y-2=\cfrac{x^2}{-8}\implies \blacktriangleright y=-\cfrac{1}{8}x^2+2 \blacktriangleleft](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7Bparabola%20vertex%20form%20with%20focus%20point%20distance%7D%0A%5C%5C%5C%5C%0A4p%28y-%20k%29%3D%28x-%20h%29%5E2%0A%5Cqquad%0A%5Cbegin%7Barray%7D%7Bllll%7D%0Avertex%5C%20%28%20h%2C%20k%29%5C%5C%5C%5C%20%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%0A%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Cbegin%7Bcases%7D%0Ah%3D0%5C%5C%0Ak%3D2%5C%5C%0Ap%3D-2%0A%5Cend%7Bcases%7D%5Cimplies%204%28-2%29%28y-2%29%3D%28x-0%29%5E2%5Cimplies%20-8%28y-2%29%3Dx%5E2%0A%5C%5C%5C%5C%5C%5C%0Ay-2%3D%5Ccfrac%7Bx%5E2%7D%7B-8%7D%5Cimplies%20%5Cblacktriangleright%20y%3D-%5Ccfrac%7B1%7D%7B8%7Dx%5E2%2B2%20%5Cblacktriangleleft%20)