Answer:
The probability that you get zero questions correct is 0.4096
The probability that you get one questions correct is 0.4096
The probability that you get three questions correct is 0.0256
Step-by-step explanation:
These probability can be describe with a Binomial Distribution. These distribution can be used when we have n identical and independent situations in which there is a probability p or probability of success and a probability q or probability of fail. Additionally q is equal to 1 - p. The probability of x for a situation in which we can apply binomial distribution is:

Where x is the variable that says the number of success in the n situations
And nCx is calculate as:

From the question we can identify that:
- n is equal to 4 multiple choice question
- p is 1/5 or 0.2, the probability of get one question correct
- q is 4/5 or 0.8, the probability of get one question incorrect
Then the probability of get zero questions correct of 4 questions is:

The probability of get one question correct of 4 questions is:

The probability of get three questions correct of 4 questions is:

Answer:
B
Step-by-step explanation:
I think B is right because it's only on one day so that one day could have way more kids than usual or way less.
(3 cos x-4 sin x)+(3sin x+4 cos x)=5
(3cos x+4cos x)+(-4sin x+3 sin x)=5
7 cos x-sin x=5
7cos x=5+sin x
(7 cos x)²=(5+sinx)²
49 cos²x=25+10 sinx+sin²x
49(1-sin²x)=25+10 sinx+sin²x
49-49sin²x=25+10sinx+sin²x
50 sin² x+10sinx-24=0
Sin x=[-10⁺₋√(100+4800)]/100=(-10⁺₋70)/100
We have two possible solutions:
sinx =(-10-70)/100=-0.8
x=sin⁻¹ (-0.8)=-53.13º (360º-53.13º=306.87)
sinx=(-10+70)/100=0.6
x=sin⁻¹ 0.6=36.87º
The solutions when 0≤x≤360º are: 36.87º and 306.87º.
First list all the terms out.
e^ix = 1 + ix/1! + (ix)^2/2! + (ix)^3/3! ...
Then, we can expand them.
e^ix = 1 + ix/1! + i^2x^2/2! + i^3x^3/3!...
Then, we can use the rules of raising i to a power.
e^ix = 1 + ix - x^2/2! - ix^3/3!...
Then, we can sort all the real and imaginary terms.
e^ix = (1 - x^2/2!...) + i(x - x^3/3!...)
We can simplify this.
e^ix = cos x + i sin x
This is Euler's Formula.
What happens if we put in pi?
x = pi
e^i*pi = cos(pi) + i sin(pi)
cos(pi) = -1
i sin(pi) = 0
e^i*pi = -1 OR e^i*pi + 1 = 0
That is Euler's identity.
They are all quadrilaterals <span />