Answer:
y= b+ 3a
Step-by-step explanation:
Given data
We are required to rent a bike and a helmet
le the flat fee for bike rental be a
and the flat fee helmet be b
let the number of hours be h
and let the total cost be y
So
y= b+ah
for h = 3
tThen the expression for the total is given as
dive the number of miles by the speed
so 450/60 = 7.5 hours
Answer:
a) 388.03
b) 148.49
c) π/8
Step-by-step explanation:
Find the diagram attached
Let the opposite side be y
Given
a) Hypotenuse = 420
theta = 3π/8 rad
theta = 3(180)/8
theta = 67.5degrees
Using the SOH CAH TOA identity
sin theta = opposite/hypotenuse
sin 67.5 = y/420
x = 420sin67.5
x = 420(0.9238)
x = 388.03
Hence the length of the side opposite to the given angle is 388.03
b) Hypotenuse = 420
theta = 3π/8 rad
theta = 3(180)/8
theta = 67.5degrees
Using the SOH CAH TOA identity
cos theta = adjacent/hypotenuse
cos 67.5 = x/420
x = 420cos67.5
x = 420(0.3827)
x = 148.49
Hence the length of the side adjacent to the given angle is 148.49
c) The sum of angle in the triangle is π
Let the measure of the unknown angle be z
z + 3π/8 + π/2 = π
z + 3π+4π/8 = π
z + 7π/8 = π
z = π - 7π/8
z = (8π-7π)/8
z = π/8
Hence the measure of the other acute angle is π/8
(5y^2 – 7y+6) + (-4y^2 + 3y+1)
y^2 - 4y + 7
Done.
tan²(<em>θ</em>) - sin²(<em>θ</em>) = sin²(<em>θ</em>)/cos²(<em>θ</em>) - sin²(<em>θ</em>)
-- because tan(<em>θ</em>) = sin(<em>θ</em>)/cos(<em>θ</em>) by definition of tangent --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - 1)
-- we pull out the common factor of sin²(<em>θ</em>) from both terms --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - cos²(<em>θ</em>)/cos²(<em>θ</em>))
-- because <em>x</em>/<em>x</em> = 1 (so long as <em>x</em> ≠ 0) --
… = sin²(<em>θ</em>) ((1 - cos²(<em>θ</em>))/cos²(<em>θ</em>))
-- we simply combine the fractions, which we can do because of the common denominator of cos²(<em>θ</em>) --
… = sin²(<em>θ</em>) (sin²(<em>θ</em>)/cos²(<em>θ</em>))
-- due to the Pythagorean identity, sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1 --
… = sin²(<em>θ</em>) tan²(<em>θ</em>)
-- again, by definition of tan(<em>θ</em>) --