Answer:
<em>Two possible answers below</em>
Step-by-step explanation:
<u>Probability and Sets</u>
We are given two sets: Students that play basketball and students that play baseball.
It's given there are 29 students in certain Algebra 2 class, 10 of which don't play any of the mentioned sports.
This leaves only 29-10=19 players of either baseball, basketball, or both sports. If one student is randomly selected, then the propability that they play basketball or baseball is:

P = 0.66
Note: if we are to calculate the probability to choose one student who plays only one of the sports, then we proceed as follows:
We also know 7 students play basketball and 14 play baseball. Since 14+7 =21, the difference of 21-19=2 students corresponds to those who play both sports.
Thus, there 19-2=17 students who play only one of the sports. The probability is:

P = 0.59
Answer:
18 but look at others awnsers aswell
Step-by-step explanation:
Answer:
Bro
Step-by-step explanation:
sorry
5n + (-6) = -2
add 6 to -2
5n = -2 + 6
5n = 4
divide both sides by 5
n = 4/5
As a rule of thumb, the sampling distribution of the sample proportion can be approximated by a normal probability distribution whenever the sample size is large.
<h3>What is the Central limit theorem?</h3>
- The Central limit theorem says that the normal probability distribution is used to approximate the sampling distribution of the sample proportions and sample means whenever the sample size is large.
- Approximation of the distribution occurs when the sample size is greater than or equal to 30 and n(1 - p) ≥ 5.
Thus, as a rule of thumb, the sampling distribution of the sample proportions can be approximated by a normal probability distribution when the sample size is large and each element is selected independently from the same population.
Learn more about the central limit theorem here:
brainly.com/question/13652429
#SPJ4