-2(x-6)-4=2(8-x)-x first perform indicated operations on both sides...
-2x+12=16-2x-x
-2x+12=16-3x add 3x to both sides
x+12=16 subtract 12 from both sides
x=4
Answer:
21, 27, 33, 39 and so on....
Answer:
If the roots of an equation are x = -1 ± i, it means that the factorized form of that equation is: (x + 1 + i)(x+ 1 - i) = 0.
Using the distributive property, we have:
(x + 1 + i)(x+ 1 - i) = x^2 + x - ix + x + 1 - i + ix + i + 1
Combining like-terms and simplifying:
⇒ x^2 + x + x + 1 + 1 = x^2 + 2x + 2 = 0
Therefore, the stament is correct. If the roots of an equation are x = -1 ± i, then the equation is: x^2 + 2x + 2 = 0.
Answer:
Get answer: Solve for x. (2x),(x-3)+1,(2x+3)+(3x+9),((x-3)(2x+3))= 0, x!=3,-3,2.
Step-by-step explanation:
a)6!+12-3
=6!+9
b)-18+3!+4
=3!-14
=3!+(-14)
both are in the form if (+)!+constant.
<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>n</u><u>e</u><u>e</u><u>d</u><u> </u><u>t</u><u>o</u><u> </u><u>k</u><u>n</u><u>o</u><u>w</u><u> </u><u>a</u><u>n</u><u>y</u><u> </u><u>q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>a</u><u>b</u><u>o</u><u>u</u><u>t</u><u> </u><u>i</u><u>t</u><u> </u><u>p</u><u>l</u><u>e</u><u>a</u><u>s</u><u>e</u><u> </u><u>let</u><u> </u><u>me</u><u> </u><u>know</u><u>.</u>